![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > itgocn | Structured version Visualization version GIF version |
Description: All integral elements are complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
itgocn | ⊢ (IntgOver‘𝑆) ⊆ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-itgo 43111 | . . . . 5 ⊢ IntgOver = (𝑎 ∈ 𝒫 ℂ ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ (Poly‘𝑎)((𝑐‘𝑏) = 0 ∧ ((coeff‘𝑐)‘(deg‘𝑐)) = 1)}) | |
2 | 1 | dmmptss 6267 | . . . 4 ⊢ dom IntgOver ⊆ 𝒫 ℂ |
3 | 2 | sseli 4004 | . . 3 ⊢ (𝑆 ∈ dom IntgOver → 𝑆 ∈ 𝒫 ℂ) |
4 | cnex 11259 | . . . . 5 ⊢ ℂ ∈ V | |
5 | 4 | elpw2 5352 | . . . 4 ⊢ (𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ) |
6 | itgoval 43113 | . . . . 5 ⊢ (𝑆 ⊆ ℂ → (IntgOver‘𝑆) = {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑆)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)}) | |
7 | ssrab2 4103 | . . . . 5 ⊢ {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑆)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)} ⊆ ℂ | |
8 | 6, 7 | eqsstrdi 4063 | . . . 4 ⊢ (𝑆 ⊆ ℂ → (IntgOver‘𝑆) ⊆ ℂ) |
9 | 5, 8 | sylbi 217 | . . 3 ⊢ (𝑆 ∈ 𝒫 ℂ → (IntgOver‘𝑆) ⊆ ℂ) |
10 | 3, 9 | syl 17 | . 2 ⊢ (𝑆 ∈ dom IntgOver → (IntgOver‘𝑆) ⊆ ℂ) |
11 | ndmfv 6950 | . . 3 ⊢ (¬ 𝑆 ∈ dom IntgOver → (IntgOver‘𝑆) = ∅) | |
12 | 0ss 4423 | . . 3 ⊢ ∅ ⊆ ℂ | |
13 | 11, 12 | eqsstrdi 4063 | . 2 ⊢ (¬ 𝑆 ∈ dom IntgOver → (IntgOver‘𝑆) ⊆ ℂ) |
14 | 10, 13 | pm2.61i 182 | 1 ⊢ (IntgOver‘𝑆) ⊆ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 {crab 3443 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 dom cdm 5695 ‘cfv 6568 ℂcc 11176 0cc0 11178 1c1 11179 Polycply 26235 coeffccoe 26237 degcdgr 26238 IntgOvercitgo 43109 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-cnex 11234 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-iota 6520 df-fun 6570 df-fv 6576 df-itgo 43111 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |