| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > itgocn | Structured version Visualization version GIF version | ||
| Description: All integral elements are complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| itgocn | ⊢ (IntgOver‘𝑆) ⊆ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-itgo 43192 | . . . . 5 ⊢ IntgOver = (𝑎 ∈ 𝒫 ℂ ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ (Poly‘𝑎)((𝑐‘𝑏) = 0 ∧ ((coeff‘𝑐)‘(deg‘𝑐)) = 1)}) | |
| 2 | 1 | dmmptss 6183 | . . . 4 ⊢ dom IntgOver ⊆ 𝒫 ℂ |
| 3 | 2 | sseli 3925 | . . 3 ⊢ (𝑆 ∈ dom IntgOver → 𝑆 ∈ 𝒫 ℂ) |
| 4 | cnex 11082 | . . . . 5 ⊢ ℂ ∈ V | |
| 5 | 4 | elpw2 5267 | . . . 4 ⊢ (𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ) |
| 6 | itgoval 43194 | . . . . 5 ⊢ (𝑆 ⊆ ℂ → (IntgOver‘𝑆) = {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑆)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)}) | |
| 7 | ssrab2 4025 | . . . . 5 ⊢ {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑆)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)} ⊆ ℂ | |
| 8 | 6, 7 | eqsstrdi 3974 | . . . 4 ⊢ (𝑆 ⊆ ℂ → (IntgOver‘𝑆) ⊆ ℂ) |
| 9 | 5, 8 | sylbi 217 | . . 3 ⊢ (𝑆 ∈ 𝒫 ℂ → (IntgOver‘𝑆) ⊆ ℂ) |
| 10 | 3, 9 | syl 17 | . 2 ⊢ (𝑆 ∈ dom IntgOver → (IntgOver‘𝑆) ⊆ ℂ) |
| 11 | ndmfv 6849 | . . 3 ⊢ (¬ 𝑆 ∈ dom IntgOver → (IntgOver‘𝑆) = ∅) | |
| 12 | 0ss 4345 | . . 3 ⊢ ∅ ⊆ ℂ | |
| 13 | 11, 12 | eqsstrdi 3974 | . 2 ⊢ (¬ 𝑆 ∈ dom IntgOver → (IntgOver‘𝑆) ⊆ ℂ) |
| 14 | 10, 13 | pm2.61i 182 | 1 ⊢ (IntgOver‘𝑆) ⊆ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 {crab 3395 ⊆ wss 3897 ∅c0 4278 𝒫 cpw 4545 dom cdm 5611 ‘cfv 6476 ℂcc 10999 0cc0 11001 1c1 11002 Polycply 26111 coeffccoe 26113 degcdgr 26114 IntgOvercitgo 43190 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-cnex 11057 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fv 6484 df-itgo 43192 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |