![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > itgocn | Structured version Visualization version GIF version |
Description: All integral elements are complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
itgocn | β’ (IntgOverβπ) β β |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-itgo 41901 | . . . . 5 β’ IntgOver = (π β π« β β¦ {π β β β£ βπ β (Polyβπ)((πβπ) = 0 β§ ((coeffβπ)β(degβπ)) = 1)}) | |
2 | 1 | dmmptss 6241 | . . . 4 β’ dom IntgOver β π« β |
3 | 2 | sseli 3979 | . . 3 β’ (π β dom IntgOver β π β π« β) |
4 | cnex 11191 | . . . . 5 β’ β β V | |
5 | 4 | elpw2 5346 | . . . 4 β’ (π β π« β β π β β) |
6 | itgoval 41903 | . . . . 5 β’ (π β β β (IntgOverβπ) = {π β β β£ βπ β (Polyβπ)((πβπ) = 0 β§ ((coeffβπ)β(degβπ)) = 1)}) | |
7 | ssrab2 4078 | . . . . 5 β’ {π β β β£ βπ β (Polyβπ)((πβπ) = 0 β§ ((coeffβπ)β(degβπ)) = 1)} β β | |
8 | 6, 7 | eqsstrdi 4037 | . . . 4 β’ (π β β β (IntgOverβπ) β β) |
9 | 5, 8 | sylbi 216 | . . 3 β’ (π β π« β β (IntgOverβπ) β β) |
10 | 3, 9 | syl 17 | . 2 β’ (π β dom IntgOver β (IntgOverβπ) β β) |
11 | ndmfv 6927 | . . 3 β’ (Β¬ π β dom IntgOver β (IntgOverβπ) = β ) | |
12 | 0ss 4397 | . . 3 β’ β β β | |
13 | 11, 12 | eqsstrdi 4037 | . 2 β’ (Β¬ π β dom IntgOver β (IntgOverβπ) β β) |
14 | 10, 13 | pm2.61i 182 | 1 β’ (IntgOverβπ) β β |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β§ wa 397 = wceq 1542 β wcel 2107 βwrex 3071 {crab 3433 β wss 3949 β c0 4323 π« cpw 4603 dom cdm 5677 βcfv 6544 βcc 11108 0cc0 11110 1c1 11111 Polycply 25698 coeffccoe 25700 degcdgr 25701 IntgOvercitgo 41899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-cnex 11166 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fv 6552 df-itgo 41901 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |