Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgocn Structured version   Visualization version   GIF version

Theorem itgocn 42825
Description: All integral elements are complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Assertion
Ref Expression
itgocn (IntgOver‘𝑆) ⊆ ℂ

Proof of Theorem itgocn
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-itgo 42820 . . . . 5 IntgOver = (𝑎 ∈ 𝒫 ℂ ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ (Poly‘𝑎)((𝑐𝑏) = 0 ∧ ((coeff‘𝑐)‘(deg‘𝑐)) = 1)})
21dmmptss 6252 . . . 4 dom IntgOver ⊆ 𝒫 ℂ
32sseli 3975 . . 3 (𝑆 ∈ dom IntgOver → 𝑆 ∈ 𝒫 ℂ)
4 cnex 11239 . . . . 5 ℂ ∈ V
54elpw2 5352 . . . 4 (𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ)
6 itgoval 42822 . . . . 5 (𝑆 ⊆ ℂ → (IntgOver‘𝑆) = {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑆)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)})
7 ssrab2 4076 . . . . 5 {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑆)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)} ⊆ ℂ
86, 7eqsstrdi 4034 . . . 4 (𝑆 ⊆ ℂ → (IntgOver‘𝑆) ⊆ ℂ)
95, 8sylbi 216 . . 3 (𝑆 ∈ 𝒫 ℂ → (IntgOver‘𝑆) ⊆ ℂ)
103, 9syl 17 . 2 (𝑆 ∈ dom IntgOver → (IntgOver‘𝑆) ⊆ ℂ)
11 ndmfv 6936 . . 3 𝑆 ∈ dom IntgOver → (IntgOver‘𝑆) = ∅)
12 0ss 4401 . . 3 ∅ ⊆ ℂ
1311, 12eqsstrdi 4034 . 2 𝑆 ∈ dom IntgOver → (IntgOver‘𝑆) ⊆ ℂ)
1410, 13pm2.61i 182 1 (IntgOver‘𝑆) ⊆ ℂ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 394   = wceq 1534  wcel 2099  wrex 3060  {crab 3419  wss 3947  c0 4325  𝒫 cpw 4607  dom cdm 5682  cfv 6554  cc 11156  0cc0 11158  1c1 11159  Polycply 26211  coeffccoe 26213  degcdgr 26214  IntgOvercitgo 42818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433  ax-cnex 11214
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fv 6562  df-itgo 42820
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator