| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > itgocn | Structured version Visualization version GIF version | ||
| Description: All integral elements are complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| itgocn | ⊢ (IntgOver‘𝑆) ⊆ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-itgo 43149 | . . . . 5 ⊢ IntgOver = (𝑎 ∈ 𝒫 ℂ ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ (Poly‘𝑎)((𝑐‘𝑏) = 0 ∧ ((coeff‘𝑐)‘(deg‘𝑐)) = 1)}) | |
| 2 | 1 | dmmptss 6241 | . . . 4 ⊢ dom IntgOver ⊆ 𝒫 ℂ |
| 3 | 2 | sseli 3959 | . . 3 ⊢ (𝑆 ∈ dom IntgOver → 𝑆 ∈ 𝒫 ℂ) |
| 4 | cnex 11218 | . . . . 5 ⊢ ℂ ∈ V | |
| 5 | 4 | elpw2 5314 | . . . 4 ⊢ (𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ) |
| 6 | itgoval 43151 | . . . . 5 ⊢ (𝑆 ⊆ ℂ → (IntgOver‘𝑆) = {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑆)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)}) | |
| 7 | ssrab2 4060 | . . . . 5 ⊢ {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑆)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)} ⊆ ℂ | |
| 8 | 6, 7 | eqsstrdi 4008 | . . . 4 ⊢ (𝑆 ⊆ ℂ → (IntgOver‘𝑆) ⊆ ℂ) |
| 9 | 5, 8 | sylbi 217 | . . 3 ⊢ (𝑆 ∈ 𝒫 ℂ → (IntgOver‘𝑆) ⊆ ℂ) |
| 10 | 3, 9 | syl 17 | . 2 ⊢ (𝑆 ∈ dom IntgOver → (IntgOver‘𝑆) ⊆ ℂ) |
| 11 | ndmfv 6921 | . . 3 ⊢ (¬ 𝑆 ∈ dom IntgOver → (IntgOver‘𝑆) = ∅) | |
| 12 | 0ss 4380 | . . 3 ⊢ ∅ ⊆ ℂ | |
| 13 | 11, 12 | eqsstrdi 4008 | . 2 ⊢ (¬ 𝑆 ∈ dom IntgOver → (IntgOver‘𝑆) ⊆ ℂ) |
| 14 | 10, 13 | pm2.61i 182 | 1 ⊢ (IntgOver‘𝑆) ⊆ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 {crab 3419 ⊆ wss 3931 ∅c0 4313 𝒫 cpw 4580 dom cdm 5665 ‘cfv 6541 ℂcc 11135 0cc0 11137 1c1 11138 Polycply 26160 coeffccoe 26162 degcdgr 26163 IntgOvercitgo 43147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-cnex 11193 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fv 6549 df-itgo 43149 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |