| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > itgocn | Structured version Visualization version GIF version | ||
| Description: All integral elements are complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| itgocn | ⊢ (IntgOver‘𝑆) ⊆ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-itgo 43132 | . . . . 5 ⊢ IntgOver = (𝑎 ∈ 𝒫 ℂ ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ (Poly‘𝑎)((𝑐‘𝑏) = 0 ∧ ((coeff‘𝑐)‘(deg‘𝑐)) = 1)}) | |
| 2 | 1 | dmmptss 6190 | . . . 4 ⊢ dom IntgOver ⊆ 𝒫 ℂ |
| 3 | 2 | sseli 3931 | . . 3 ⊢ (𝑆 ∈ dom IntgOver → 𝑆 ∈ 𝒫 ℂ) |
| 4 | cnex 11090 | . . . . 5 ⊢ ℂ ∈ V | |
| 5 | 4 | elpw2 5273 | . . . 4 ⊢ (𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ) |
| 6 | itgoval 43134 | . . . . 5 ⊢ (𝑆 ⊆ ℂ → (IntgOver‘𝑆) = {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑆)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)}) | |
| 7 | ssrab2 4031 | . . . . 5 ⊢ {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑆)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)} ⊆ ℂ | |
| 8 | 6, 7 | eqsstrdi 3980 | . . . 4 ⊢ (𝑆 ⊆ ℂ → (IntgOver‘𝑆) ⊆ ℂ) |
| 9 | 5, 8 | sylbi 217 | . . 3 ⊢ (𝑆 ∈ 𝒫 ℂ → (IntgOver‘𝑆) ⊆ ℂ) |
| 10 | 3, 9 | syl 17 | . 2 ⊢ (𝑆 ∈ dom IntgOver → (IntgOver‘𝑆) ⊆ ℂ) |
| 11 | ndmfv 6855 | . . 3 ⊢ (¬ 𝑆 ∈ dom IntgOver → (IntgOver‘𝑆) = ∅) | |
| 12 | 0ss 4351 | . . 3 ⊢ ∅ ⊆ ℂ | |
| 13 | 11, 12 | eqsstrdi 3980 | . 2 ⊢ (¬ 𝑆 ∈ dom IntgOver → (IntgOver‘𝑆) ⊆ ℂ) |
| 14 | 10, 13 | pm2.61i 182 | 1 ⊢ (IntgOver‘𝑆) ⊆ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3394 ⊆ wss 3903 ∅c0 4284 𝒫 cpw 4551 dom cdm 5619 ‘cfv 6482 ℂcc 11007 0cc0 11009 1c1 11010 Polycply 26087 coeffccoe 26089 degcdgr 26090 IntgOvercitgo 43130 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-cnex 11065 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fv 6490 df-itgo 43132 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |