Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aaitgo Structured version   Visualization version   GIF version

Theorem aaitgo 43161
Description: The standard algebraic numbers 𝔸 are generated by IntgOver. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Assertion
Ref Expression
aaitgo 𝔸 = (IntgOver‘ℚ)

Proof of Theorem aaitgo
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabid 3442 . . 3 (𝑎 ∈ {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)} ↔ (𝑎 ∈ ℂ ∧ ∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)))
2 qsscn 12981 . . . . 5 ℚ ⊆ ℂ
3 itgoval 43160 . . . . 5 (ℚ ⊆ ℂ → (IntgOver‘ℚ) = {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)})
42, 3ax-mp 5 . . . 4 (IntgOver‘ℚ) = {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)}
54eleq2i 2827 . . 3 (𝑎 ∈ (IntgOver‘ℚ) ↔ 𝑎 ∈ {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)})
6 aacn 26282 . . . . 5 (𝑎 ∈ 𝔸 → 𝑎 ∈ ℂ)
7 mpaacl 43152 . . . . . 6 (𝑎 ∈ 𝔸 → (minPolyAA‘𝑎) ∈ (Poly‘ℚ))
8 mpaaroot 43154 . . . . . 6 (𝑎 ∈ 𝔸 → ((minPolyAA‘𝑎)‘𝑎) = 0)
9 mpaadgr 43153 . . . . . . . 8 (𝑎 ∈ 𝔸 → (deg‘(minPolyAA‘𝑎)) = (degAA𝑎))
109fveq2d 6885 . . . . . . 7 (𝑎 ∈ 𝔸 → ((coeff‘(minPolyAA‘𝑎))‘(deg‘(minPolyAA‘𝑎))) = ((coeff‘(minPolyAA‘𝑎))‘(degAA𝑎)))
11 mpaamn 43155 . . . . . . 7 (𝑎 ∈ 𝔸 → ((coeff‘(minPolyAA‘𝑎))‘(degAA𝑎)) = 1)
1210, 11eqtrd 2771 . . . . . 6 (𝑎 ∈ 𝔸 → ((coeff‘(minPolyAA‘𝑎))‘(deg‘(minPolyAA‘𝑎))) = 1)
13 fveq1 6880 . . . . . . . . 9 (𝑏 = (minPolyAA‘𝑎) → (𝑏𝑎) = ((minPolyAA‘𝑎)‘𝑎))
1413eqeq1d 2738 . . . . . . . 8 (𝑏 = (minPolyAA‘𝑎) → ((𝑏𝑎) = 0 ↔ ((minPolyAA‘𝑎)‘𝑎) = 0))
15 fveq2 6881 . . . . . . . . . 10 (𝑏 = (minPolyAA‘𝑎) → (coeff‘𝑏) = (coeff‘(minPolyAA‘𝑎)))
16 fveq2 6881 . . . . . . . . . 10 (𝑏 = (minPolyAA‘𝑎) → (deg‘𝑏) = (deg‘(minPolyAA‘𝑎)))
1715, 16fveq12d 6888 . . . . . . . . 9 (𝑏 = (minPolyAA‘𝑎) → ((coeff‘𝑏)‘(deg‘𝑏)) = ((coeff‘(minPolyAA‘𝑎))‘(deg‘(minPolyAA‘𝑎))))
1817eqeq1d 2738 . . . . . . . 8 (𝑏 = (minPolyAA‘𝑎) → (((coeff‘𝑏)‘(deg‘𝑏)) = 1 ↔ ((coeff‘(minPolyAA‘𝑎))‘(deg‘(minPolyAA‘𝑎))) = 1))
1914, 18anbi12d 632 . . . . . . 7 (𝑏 = (minPolyAA‘𝑎) → (((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1) ↔ (((minPolyAA‘𝑎)‘𝑎) = 0 ∧ ((coeff‘(minPolyAA‘𝑎))‘(deg‘(minPolyAA‘𝑎))) = 1)))
2019rspcev 3606 . . . . . 6 (((minPolyAA‘𝑎) ∈ (Poly‘ℚ) ∧ (((minPolyAA‘𝑎)‘𝑎) = 0 ∧ ((coeff‘(minPolyAA‘𝑎))‘(deg‘(minPolyAA‘𝑎))) = 1)) → ∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1))
217, 8, 12, 20syl12anc 836 . . . . 5 (𝑎 ∈ 𝔸 → ∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1))
226, 21jca 511 . . . 4 (𝑎 ∈ 𝔸 → (𝑎 ∈ ℂ ∧ ∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)))
23 simpl 482 . . . . . . . . 9 ((𝑏 ∈ (Poly‘ℚ) ∧ ((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)) → 𝑏 ∈ (Poly‘ℚ))
24 coe0 26218 . . . . . . . . . . . . . . 15 (coeff‘0𝑝) = (ℕ0 × {0})
2524fveq1i 6882 . . . . . . . . . . . . . 14 ((coeff‘0𝑝)‘(deg‘0𝑝)) = ((ℕ0 × {0})‘(deg‘0𝑝))
26 dgr0 26225 . . . . . . . . . . . . . . . 16 (deg‘0𝑝) = 0
27 0nn0 12521 . . . . . . . . . . . . . . . 16 0 ∈ ℕ0
2826, 27eqeltri 2831 . . . . . . . . . . . . . . 15 (deg‘0𝑝) ∈ ℕ0
29 c0ex 11234 . . . . . . . . . . . . . . . 16 0 ∈ V
3029fvconst2 7201 . . . . . . . . . . . . . . 15 ((deg‘0𝑝) ∈ ℕ0 → ((ℕ0 × {0})‘(deg‘0𝑝)) = 0)
3128, 30ax-mp 5 . . . . . . . . . . . . . 14 ((ℕ0 × {0})‘(deg‘0𝑝)) = 0
3225, 31eqtri 2759 . . . . . . . . . . . . 13 ((coeff‘0𝑝)‘(deg‘0𝑝)) = 0
33 0ne1 12316 . . . . . . . . . . . . 13 0 ≠ 1
3432, 33eqnetri 3003 . . . . . . . . . . . 12 ((coeff‘0𝑝)‘(deg‘0𝑝)) ≠ 1
35 fveq2 6881 . . . . . . . . . . . . . 14 (𝑏 = 0𝑝 → (coeff‘𝑏) = (coeff‘0𝑝))
36 fveq2 6881 . . . . . . . . . . . . . 14 (𝑏 = 0𝑝 → (deg‘𝑏) = (deg‘0𝑝))
3735, 36fveq12d 6888 . . . . . . . . . . . . 13 (𝑏 = 0𝑝 → ((coeff‘𝑏)‘(deg‘𝑏)) = ((coeff‘0𝑝)‘(deg‘0𝑝)))
3837neeq1d 2992 . . . . . . . . . . . 12 (𝑏 = 0𝑝 → (((coeff‘𝑏)‘(deg‘𝑏)) ≠ 1 ↔ ((coeff‘0𝑝)‘(deg‘0𝑝)) ≠ 1))
3934, 38mpbiri 258 . . . . . . . . . . 11 (𝑏 = 0𝑝 → ((coeff‘𝑏)‘(deg‘𝑏)) ≠ 1)
4039necon2i 2967 . . . . . . . . . 10 (((coeff‘𝑏)‘(deg‘𝑏)) = 1 → 𝑏 ≠ 0𝑝)
4140ad2antll 729 . . . . . . . . 9 ((𝑏 ∈ (Poly‘ℚ) ∧ ((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)) → 𝑏 ≠ 0𝑝)
42 eldifsn 4767 . . . . . . . . 9 (𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ↔ (𝑏 ∈ (Poly‘ℚ) ∧ 𝑏 ≠ 0𝑝))
4323, 41, 42sylanbrc 583 . . . . . . . 8 ((𝑏 ∈ (Poly‘ℚ) ∧ ((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)) → 𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
44 simprl 770 . . . . . . . 8 ((𝑏 ∈ (Poly‘ℚ) ∧ ((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)) → (𝑏𝑎) = 0)
4543, 44jca 511 . . . . . . 7 ((𝑏 ∈ (Poly‘ℚ) ∧ ((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)) → (𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝑎) = 0))
4645reximi2 3070 . . . . . 6 (∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1) → ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑏𝑎) = 0)
4746anim2i 617 . . . . 5 ((𝑎 ∈ ℂ ∧ ∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)) → (𝑎 ∈ ℂ ∧ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑏𝑎) = 0))
48 elqaa 26287 . . . . 5 (𝑎 ∈ 𝔸 ↔ (𝑎 ∈ ℂ ∧ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑏𝑎) = 0))
4947, 48sylibr 234 . . . 4 ((𝑎 ∈ ℂ ∧ ∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)) → 𝑎 ∈ 𝔸)
5022, 49impbii 209 . . 3 (𝑎 ∈ 𝔸 ↔ (𝑎 ∈ ℂ ∧ ∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)))
511, 5, 503bitr4ri 304 . 2 (𝑎 ∈ 𝔸 ↔ 𝑎 ∈ (IntgOver‘ℚ))
5251eqriv 2733 1 𝔸 = (IntgOver‘ℚ)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wne 2933  wrex 3061  {crab 3420  cdif 3928  wss 3931  {csn 4606   × cxp 5657  cfv 6536  cc 11132  0cc0 11134  1c1 11135  0cn0 12506  cq 12969  0𝑝c0p 25627  Polycply 26146  coeffccoe 26148  degcdgr 26149  𝔸caa 26279  degAAcdgraa 43139  minPolyAAcmpaa 43140  IntgOvercitgo 43156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-rlim 15510  df-sum 15708  df-0p 25628  df-ply 26150  df-coe 26152  df-dgr 26153  df-aa 26280  df-dgraa 43141  df-mpaa 43142  df-itgo 43158
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator