Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aaitgo Structured version   Visualization version   GIF version

Theorem aaitgo 43151
Description: The standard algebraic numbers 𝔸 are generated by IntgOver. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Assertion
Ref Expression
aaitgo 𝔸 = (IntgOver‘ℚ)

Proof of Theorem aaitgo
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabid 3427 . . 3 (𝑎 ∈ {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)} ↔ (𝑎 ∈ ℂ ∧ ∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)))
2 qsscn 12919 . . . . 5 ℚ ⊆ ℂ
3 itgoval 43150 . . . . 5 (ℚ ⊆ ℂ → (IntgOver‘ℚ) = {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)})
42, 3ax-mp 5 . . . 4 (IntgOver‘ℚ) = {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)}
54eleq2i 2820 . . 3 (𝑎 ∈ (IntgOver‘ℚ) ↔ 𝑎 ∈ {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)})
6 aacn 26225 . . . . 5 (𝑎 ∈ 𝔸 → 𝑎 ∈ ℂ)
7 mpaacl 43142 . . . . . 6 (𝑎 ∈ 𝔸 → (minPolyAA‘𝑎) ∈ (Poly‘ℚ))
8 mpaaroot 43144 . . . . . 6 (𝑎 ∈ 𝔸 → ((minPolyAA‘𝑎)‘𝑎) = 0)
9 mpaadgr 43143 . . . . . . . 8 (𝑎 ∈ 𝔸 → (deg‘(minPolyAA‘𝑎)) = (degAA𝑎))
109fveq2d 6862 . . . . . . 7 (𝑎 ∈ 𝔸 → ((coeff‘(minPolyAA‘𝑎))‘(deg‘(minPolyAA‘𝑎))) = ((coeff‘(minPolyAA‘𝑎))‘(degAA𝑎)))
11 mpaamn 43145 . . . . . . 7 (𝑎 ∈ 𝔸 → ((coeff‘(minPolyAA‘𝑎))‘(degAA𝑎)) = 1)
1210, 11eqtrd 2764 . . . . . 6 (𝑎 ∈ 𝔸 → ((coeff‘(minPolyAA‘𝑎))‘(deg‘(minPolyAA‘𝑎))) = 1)
13 fveq1 6857 . . . . . . . . 9 (𝑏 = (minPolyAA‘𝑎) → (𝑏𝑎) = ((minPolyAA‘𝑎)‘𝑎))
1413eqeq1d 2731 . . . . . . . 8 (𝑏 = (minPolyAA‘𝑎) → ((𝑏𝑎) = 0 ↔ ((minPolyAA‘𝑎)‘𝑎) = 0))
15 fveq2 6858 . . . . . . . . . 10 (𝑏 = (minPolyAA‘𝑎) → (coeff‘𝑏) = (coeff‘(minPolyAA‘𝑎)))
16 fveq2 6858 . . . . . . . . . 10 (𝑏 = (minPolyAA‘𝑎) → (deg‘𝑏) = (deg‘(minPolyAA‘𝑎)))
1715, 16fveq12d 6865 . . . . . . . . 9 (𝑏 = (minPolyAA‘𝑎) → ((coeff‘𝑏)‘(deg‘𝑏)) = ((coeff‘(minPolyAA‘𝑎))‘(deg‘(minPolyAA‘𝑎))))
1817eqeq1d 2731 . . . . . . . 8 (𝑏 = (minPolyAA‘𝑎) → (((coeff‘𝑏)‘(deg‘𝑏)) = 1 ↔ ((coeff‘(minPolyAA‘𝑎))‘(deg‘(minPolyAA‘𝑎))) = 1))
1914, 18anbi12d 632 . . . . . . 7 (𝑏 = (minPolyAA‘𝑎) → (((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1) ↔ (((minPolyAA‘𝑎)‘𝑎) = 0 ∧ ((coeff‘(minPolyAA‘𝑎))‘(deg‘(minPolyAA‘𝑎))) = 1)))
2019rspcev 3588 . . . . . 6 (((minPolyAA‘𝑎) ∈ (Poly‘ℚ) ∧ (((minPolyAA‘𝑎)‘𝑎) = 0 ∧ ((coeff‘(minPolyAA‘𝑎))‘(deg‘(minPolyAA‘𝑎))) = 1)) → ∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1))
217, 8, 12, 20syl12anc 836 . . . . 5 (𝑎 ∈ 𝔸 → ∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1))
226, 21jca 511 . . . 4 (𝑎 ∈ 𝔸 → (𝑎 ∈ ℂ ∧ ∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)))
23 simpl 482 . . . . . . . . 9 ((𝑏 ∈ (Poly‘ℚ) ∧ ((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)) → 𝑏 ∈ (Poly‘ℚ))
24 coe0 26161 . . . . . . . . . . . . . . 15 (coeff‘0𝑝) = (ℕ0 × {0})
2524fveq1i 6859 . . . . . . . . . . . . . 14 ((coeff‘0𝑝)‘(deg‘0𝑝)) = ((ℕ0 × {0})‘(deg‘0𝑝))
26 dgr0 26168 . . . . . . . . . . . . . . . 16 (deg‘0𝑝) = 0
27 0nn0 12457 . . . . . . . . . . . . . . . 16 0 ∈ ℕ0
2826, 27eqeltri 2824 . . . . . . . . . . . . . . 15 (deg‘0𝑝) ∈ ℕ0
29 c0ex 11168 . . . . . . . . . . . . . . . 16 0 ∈ V
3029fvconst2 7178 . . . . . . . . . . . . . . 15 ((deg‘0𝑝) ∈ ℕ0 → ((ℕ0 × {0})‘(deg‘0𝑝)) = 0)
3128, 30ax-mp 5 . . . . . . . . . . . . . 14 ((ℕ0 × {0})‘(deg‘0𝑝)) = 0
3225, 31eqtri 2752 . . . . . . . . . . . . 13 ((coeff‘0𝑝)‘(deg‘0𝑝)) = 0
33 0ne1 12257 . . . . . . . . . . . . 13 0 ≠ 1
3432, 33eqnetri 2995 . . . . . . . . . . . 12 ((coeff‘0𝑝)‘(deg‘0𝑝)) ≠ 1
35 fveq2 6858 . . . . . . . . . . . . . 14 (𝑏 = 0𝑝 → (coeff‘𝑏) = (coeff‘0𝑝))
36 fveq2 6858 . . . . . . . . . . . . . 14 (𝑏 = 0𝑝 → (deg‘𝑏) = (deg‘0𝑝))
3735, 36fveq12d 6865 . . . . . . . . . . . . 13 (𝑏 = 0𝑝 → ((coeff‘𝑏)‘(deg‘𝑏)) = ((coeff‘0𝑝)‘(deg‘0𝑝)))
3837neeq1d 2984 . . . . . . . . . . . 12 (𝑏 = 0𝑝 → (((coeff‘𝑏)‘(deg‘𝑏)) ≠ 1 ↔ ((coeff‘0𝑝)‘(deg‘0𝑝)) ≠ 1))
3934, 38mpbiri 258 . . . . . . . . . . 11 (𝑏 = 0𝑝 → ((coeff‘𝑏)‘(deg‘𝑏)) ≠ 1)
4039necon2i 2959 . . . . . . . . . 10 (((coeff‘𝑏)‘(deg‘𝑏)) = 1 → 𝑏 ≠ 0𝑝)
4140ad2antll 729 . . . . . . . . 9 ((𝑏 ∈ (Poly‘ℚ) ∧ ((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)) → 𝑏 ≠ 0𝑝)
42 eldifsn 4750 . . . . . . . . 9 (𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ↔ (𝑏 ∈ (Poly‘ℚ) ∧ 𝑏 ≠ 0𝑝))
4323, 41, 42sylanbrc 583 . . . . . . . 8 ((𝑏 ∈ (Poly‘ℚ) ∧ ((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)) → 𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
44 simprl 770 . . . . . . . 8 ((𝑏 ∈ (Poly‘ℚ) ∧ ((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)) → (𝑏𝑎) = 0)
4543, 44jca 511 . . . . . . 7 ((𝑏 ∈ (Poly‘ℚ) ∧ ((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)) → (𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝑎) = 0))
4645reximi2 3062 . . . . . 6 (∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1) → ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑏𝑎) = 0)
4746anim2i 617 . . . . 5 ((𝑎 ∈ ℂ ∧ ∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)) → (𝑎 ∈ ℂ ∧ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑏𝑎) = 0))
48 elqaa 26230 . . . . 5 (𝑎 ∈ 𝔸 ↔ (𝑎 ∈ ℂ ∧ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑏𝑎) = 0))
4947, 48sylibr 234 . . . 4 ((𝑎 ∈ ℂ ∧ ∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)) → 𝑎 ∈ 𝔸)
5022, 49impbii 209 . . 3 (𝑎 ∈ 𝔸 ↔ (𝑎 ∈ ℂ ∧ ∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)))
511, 5, 503bitr4ri 304 . 2 (𝑎 ∈ 𝔸 ↔ 𝑎 ∈ (IntgOver‘ℚ))
5251eqriv 2726 1 𝔸 = (IntgOver‘ℚ)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3405  cdif 3911  wss 3914  {csn 4589   × cxp 5636  cfv 6511  cc 11066  0cc0 11068  1c1 11069  0cn0 12442  cq 12907  0𝑝c0p 25570  Polycply 26089  coeffccoe 26091  degcdgr 26092  𝔸caa 26222  degAAcdgraa 43129  minPolyAAcmpaa 43130  IntgOvercitgo 43146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-0p 25571  df-ply 26093  df-coe 26095  df-dgr 26096  df-aa 26223  df-dgraa 43131  df-mpaa 43132  df-itgo 43148
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator