Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aaitgo Structured version   Visualization version   GIF version

Theorem aaitgo 43124
Description: The standard algebraic numbers 𝔸 are generated by IntgOver. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Assertion
Ref Expression
aaitgo 𝔸 = (IntgOver‘ℚ)

Proof of Theorem aaitgo
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabid 3424 . . 3 (𝑎 ∈ {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)} ↔ (𝑎 ∈ ℂ ∧ ∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)))
2 qsscn 12895 . . . . 5 ℚ ⊆ ℂ
3 itgoval 43123 . . . . 5 (ℚ ⊆ ℂ → (IntgOver‘ℚ) = {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)})
42, 3ax-mp 5 . . . 4 (IntgOver‘ℚ) = {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)}
54eleq2i 2820 . . 3 (𝑎 ∈ (IntgOver‘ℚ) ↔ 𝑎 ∈ {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)})
6 aacn 26201 . . . . 5 (𝑎 ∈ 𝔸 → 𝑎 ∈ ℂ)
7 mpaacl 43115 . . . . . 6 (𝑎 ∈ 𝔸 → (minPolyAA‘𝑎) ∈ (Poly‘ℚ))
8 mpaaroot 43117 . . . . . 6 (𝑎 ∈ 𝔸 → ((minPolyAA‘𝑎)‘𝑎) = 0)
9 mpaadgr 43116 . . . . . . . 8 (𝑎 ∈ 𝔸 → (deg‘(minPolyAA‘𝑎)) = (degAA𝑎))
109fveq2d 6844 . . . . . . 7 (𝑎 ∈ 𝔸 → ((coeff‘(minPolyAA‘𝑎))‘(deg‘(minPolyAA‘𝑎))) = ((coeff‘(minPolyAA‘𝑎))‘(degAA𝑎)))
11 mpaamn 43118 . . . . . . 7 (𝑎 ∈ 𝔸 → ((coeff‘(minPolyAA‘𝑎))‘(degAA𝑎)) = 1)
1210, 11eqtrd 2764 . . . . . 6 (𝑎 ∈ 𝔸 → ((coeff‘(minPolyAA‘𝑎))‘(deg‘(minPolyAA‘𝑎))) = 1)
13 fveq1 6839 . . . . . . . . 9 (𝑏 = (minPolyAA‘𝑎) → (𝑏𝑎) = ((minPolyAA‘𝑎)‘𝑎))
1413eqeq1d 2731 . . . . . . . 8 (𝑏 = (minPolyAA‘𝑎) → ((𝑏𝑎) = 0 ↔ ((minPolyAA‘𝑎)‘𝑎) = 0))
15 fveq2 6840 . . . . . . . . . 10 (𝑏 = (minPolyAA‘𝑎) → (coeff‘𝑏) = (coeff‘(minPolyAA‘𝑎)))
16 fveq2 6840 . . . . . . . . . 10 (𝑏 = (minPolyAA‘𝑎) → (deg‘𝑏) = (deg‘(minPolyAA‘𝑎)))
1715, 16fveq12d 6847 . . . . . . . . 9 (𝑏 = (minPolyAA‘𝑎) → ((coeff‘𝑏)‘(deg‘𝑏)) = ((coeff‘(minPolyAA‘𝑎))‘(deg‘(minPolyAA‘𝑎))))
1817eqeq1d 2731 . . . . . . . 8 (𝑏 = (minPolyAA‘𝑎) → (((coeff‘𝑏)‘(deg‘𝑏)) = 1 ↔ ((coeff‘(minPolyAA‘𝑎))‘(deg‘(minPolyAA‘𝑎))) = 1))
1914, 18anbi12d 632 . . . . . . 7 (𝑏 = (minPolyAA‘𝑎) → (((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1) ↔ (((minPolyAA‘𝑎)‘𝑎) = 0 ∧ ((coeff‘(minPolyAA‘𝑎))‘(deg‘(minPolyAA‘𝑎))) = 1)))
2019rspcev 3585 . . . . . 6 (((minPolyAA‘𝑎) ∈ (Poly‘ℚ) ∧ (((minPolyAA‘𝑎)‘𝑎) = 0 ∧ ((coeff‘(minPolyAA‘𝑎))‘(deg‘(minPolyAA‘𝑎))) = 1)) → ∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1))
217, 8, 12, 20syl12anc 836 . . . . 5 (𝑎 ∈ 𝔸 → ∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1))
226, 21jca 511 . . . 4 (𝑎 ∈ 𝔸 → (𝑎 ∈ ℂ ∧ ∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)))
23 simpl 482 . . . . . . . . 9 ((𝑏 ∈ (Poly‘ℚ) ∧ ((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)) → 𝑏 ∈ (Poly‘ℚ))
24 coe0 26137 . . . . . . . . . . . . . . 15 (coeff‘0𝑝) = (ℕ0 × {0})
2524fveq1i 6841 . . . . . . . . . . . . . 14 ((coeff‘0𝑝)‘(deg‘0𝑝)) = ((ℕ0 × {0})‘(deg‘0𝑝))
26 dgr0 26144 . . . . . . . . . . . . . . . 16 (deg‘0𝑝) = 0
27 0nn0 12433 . . . . . . . . . . . . . . . 16 0 ∈ ℕ0
2826, 27eqeltri 2824 . . . . . . . . . . . . . . 15 (deg‘0𝑝) ∈ ℕ0
29 c0ex 11144 . . . . . . . . . . . . . . . 16 0 ∈ V
3029fvconst2 7160 . . . . . . . . . . . . . . 15 ((deg‘0𝑝) ∈ ℕ0 → ((ℕ0 × {0})‘(deg‘0𝑝)) = 0)
3128, 30ax-mp 5 . . . . . . . . . . . . . 14 ((ℕ0 × {0})‘(deg‘0𝑝)) = 0
3225, 31eqtri 2752 . . . . . . . . . . . . 13 ((coeff‘0𝑝)‘(deg‘0𝑝)) = 0
33 0ne1 12233 . . . . . . . . . . . . 13 0 ≠ 1
3432, 33eqnetri 2995 . . . . . . . . . . . 12 ((coeff‘0𝑝)‘(deg‘0𝑝)) ≠ 1
35 fveq2 6840 . . . . . . . . . . . . . 14 (𝑏 = 0𝑝 → (coeff‘𝑏) = (coeff‘0𝑝))
36 fveq2 6840 . . . . . . . . . . . . . 14 (𝑏 = 0𝑝 → (deg‘𝑏) = (deg‘0𝑝))
3735, 36fveq12d 6847 . . . . . . . . . . . . 13 (𝑏 = 0𝑝 → ((coeff‘𝑏)‘(deg‘𝑏)) = ((coeff‘0𝑝)‘(deg‘0𝑝)))
3837neeq1d 2984 . . . . . . . . . . . 12 (𝑏 = 0𝑝 → (((coeff‘𝑏)‘(deg‘𝑏)) ≠ 1 ↔ ((coeff‘0𝑝)‘(deg‘0𝑝)) ≠ 1))
3934, 38mpbiri 258 . . . . . . . . . . 11 (𝑏 = 0𝑝 → ((coeff‘𝑏)‘(deg‘𝑏)) ≠ 1)
4039necon2i 2959 . . . . . . . . . 10 (((coeff‘𝑏)‘(deg‘𝑏)) = 1 → 𝑏 ≠ 0𝑝)
4140ad2antll 729 . . . . . . . . 9 ((𝑏 ∈ (Poly‘ℚ) ∧ ((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)) → 𝑏 ≠ 0𝑝)
42 eldifsn 4746 . . . . . . . . 9 (𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ↔ (𝑏 ∈ (Poly‘ℚ) ∧ 𝑏 ≠ 0𝑝))
4323, 41, 42sylanbrc 583 . . . . . . . 8 ((𝑏 ∈ (Poly‘ℚ) ∧ ((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)) → 𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
44 simprl 770 . . . . . . . 8 ((𝑏 ∈ (Poly‘ℚ) ∧ ((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)) → (𝑏𝑎) = 0)
4543, 44jca 511 . . . . . . 7 ((𝑏 ∈ (Poly‘ℚ) ∧ ((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)) → (𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑏𝑎) = 0))
4645reximi2 3062 . . . . . 6 (∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1) → ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑏𝑎) = 0)
4746anim2i 617 . . . . 5 ((𝑎 ∈ ℂ ∧ ∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)) → (𝑎 ∈ ℂ ∧ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑏𝑎) = 0))
48 elqaa 26206 . . . . 5 (𝑎 ∈ 𝔸 ↔ (𝑎 ∈ ℂ ∧ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑏𝑎) = 0))
4947, 48sylibr 234 . . . 4 ((𝑎 ∈ ℂ ∧ ∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)) → 𝑎 ∈ 𝔸)
5022, 49impbii 209 . . 3 (𝑎 ∈ 𝔸 ↔ (𝑎 ∈ ℂ ∧ ∃𝑏 ∈ (Poly‘ℚ)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)))
511, 5, 503bitr4ri 304 . 2 (𝑎 ∈ 𝔸 ↔ 𝑎 ∈ (IntgOver‘ℚ))
5251eqriv 2726 1 𝔸 = (IntgOver‘ℚ)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3402  cdif 3908  wss 3911  {csn 4585   × cxp 5629  cfv 6499  cc 11042  0cc0 11044  1c1 11045  0cn0 12418  cq 12883  0𝑝c0p 25546  Polycply 26065  coeffccoe 26067  degcdgr 26068  𝔸caa 26198  degAAcdgraa 43102  minPolyAAcmpaa 43103  IntgOvercitgo 43119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-0p 25547  df-ply 26069  df-coe 26071  df-dgr 26072  df-aa 26199  df-dgraa 43104  df-mpaa 43105  df-itgo 43121
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator