| Step | Hyp | Ref
| Expression |
| 1 | | rabid 3442 |
. . 3
⊢ (𝑎 ∈ {𝑎 ∈ ℂ ∣ ∃𝑏 ∈
(Poly‘ℚ)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)} ↔ (𝑎 ∈ ℂ ∧ ∃𝑏 ∈
(Poly‘ℚ)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1))) |
| 2 | | qsscn 12981 |
. . . . 5
⊢ ℚ
⊆ ℂ |
| 3 | | itgoval 43160 |
. . . . 5
⊢ (ℚ
⊆ ℂ → (IntgOver‘ℚ) = {𝑎 ∈ ℂ ∣ ∃𝑏 ∈
(Poly‘ℚ)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)}) |
| 4 | 2, 3 | ax-mp 5 |
. . . 4
⊢
(IntgOver‘ℚ) = {𝑎 ∈ ℂ ∣ ∃𝑏 ∈
(Poly‘ℚ)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)} |
| 5 | 4 | eleq2i 2827 |
. . 3
⊢ (𝑎 ∈ (IntgOver‘ℚ)
↔ 𝑎 ∈ {𝑎 ∈ ℂ ∣
∃𝑏 ∈
(Poly‘ℚ)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)}) |
| 6 | | aacn 26282 |
. . . . 5
⊢ (𝑎 ∈ 𝔸 → 𝑎 ∈
ℂ) |
| 7 | | mpaacl 43152 |
. . . . . 6
⊢ (𝑎 ∈ 𝔸 →
(minPolyAA‘𝑎) ∈
(Poly‘ℚ)) |
| 8 | | mpaaroot 43154 |
. . . . . 6
⊢ (𝑎 ∈ 𝔸 →
((minPolyAA‘𝑎)‘𝑎) = 0) |
| 9 | | mpaadgr 43153 |
. . . . . . . 8
⊢ (𝑎 ∈ 𝔸 →
(deg‘(minPolyAA‘𝑎)) = (degAA‘𝑎)) |
| 10 | 9 | fveq2d 6885 |
. . . . . . 7
⊢ (𝑎 ∈ 𝔸 →
((coeff‘(minPolyAA‘𝑎))‘(deg‘(minPolyAA‘𝑎))) =
((coeff‘(minPolyAA‘𝑎))‘(degAA‘𝑎))) |
| 11 | | mpaamn 43155 |
. . . . . . 7
⊢ (𝑎 ∈ 𝔸 →
((coeff‘(minPolyAA‘𝑎))‘(degAA‘𝑎)) = 1) |
| 12 | 10, 11 | eqtrd 2771 |
. . . . . 6
⊢ (𝑎 ∈ 𝔸 →
((coeff‘(minPolyAA‘𝑎))‘(deg‘(minPolyAA‘𝑎))) = 1) |
| 13 | | fveq1 6880 |
. . . . . . . . 9
⊢ (𝑏 = (minPolyAA‘𝑎) → (𝑏‘𝑎) = ((minPolyAA‘𝑎)‘𝑎)) |
| 14 | 13 | eqeq1d 2738 |
. . . . . . . 8
⊢ (𝑏 = (minPolyAA‘𝑎) → ((𝑏‘𝑎) = 0 ↔ ((minPolyAA‘𝑎)‘𝑎) = 0)) |
| 15 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝑏 = (minPolyAA‘𝑎) → (coeff‘𝑏) =
(coeff‘(minPolyAA‘𝑎))) |
| 16 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝑏 = (minPolyAA‘𝑎) → (deg‘𝑏) =
(deg‘(minPolyAA‘𝑎))) |
| 17 | 15, 16 | fveq12d 6888 |
. . . . . . . . 9
⊢ (𝑏 = (minPolyAA‘𝑎) → ((coeff‘𝑏)‘(deg‘𝑏)) =
((coeff‘(minPolyAA‘𝑎))‘(deg‘(minPolyAA‘𝑎)))) |
| 18 | 17 | eqeq1d 2738 |
. . . . . . . 8
⊢ (𝑏 = (minPolyAA‘𝑎) → (((coeff‘𝑏)‘(deg‘𝑏)) = 1 ↔
((coeff‘(minPolyAA‘𝑎))‘(deg‘(minPolyAA‘𝑎))) = 1)) |
| 19 | 14, 18 | anbi12d 632 |
. . . . . . 7
⊢ (𝑏 = (minPolyAA‘𝑎) → (((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1) ↔ (((minPolyAA‘𝑎)‘𝑎) = 0 ∧
((coeff‘(minPolyAA‘𝑎))‘(deg‘(minPolyAA‘𝑎))) = 1))) |
| 20 | 19 | rspcev 3606 |
. . . . . 6
⊢
(((minPolyAA‘𝑎) ∈ (Poly‘ℚ) ∧
(((minPolyAA‘𝑎)‘𝑎) = 0 ∧
((coeff‘(minPolyAA‘𝑎))‘(deg‘(minPolyAA‘𝑎))) = 1)) → ∃𝑏 ∈
(Poly‘ℚ)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)) |
| 21 | 7, 8, 12, 20 | syl12anc 836 |
. . . . 5
⊢ (𝑎 ∈ 𝔸 →
∃𝑏 ∈
(Poly‘ℚ)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)) |
| 22 | 6, 21 | jca 511 |
. . . 4
⊢ (𝑎 ∈ 𝔸 → (𝑎 ∈ ℂ ∧
∃𝑏 ∈
(Poly‘ℚ)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1))) |
| 23 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑏 ∈ (Poly‘ℚ)
∧ ((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)) → 𝑏 ∈
(Poly‘ℚ)) |
| 24 | | coe0 26218 |
. . . . . . . . . . . . . . 15
⊢
(coeff‘0𝑝) = (ℕ0 ×
{0}) |
| 25 | 24 | fveq1i 6882 |
. . . . . . . . . . . . . 14
⊢
((coeff‘0𝑝)‘(deg‘0𝑝))
= ((ℕ0 ×
{0})‘(deg‘0𝑝)) |
| 26 | | dgr0 26225 |
. . . . . . . . . . . . . . . 16
⊢
(deg‘0𝑝) = 0 |
| 27 | | 0nn0 12521 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℕ0 |
| 28 | 26, 27 | eqeltri 2831 |
. . . . . . . . . . . . . . 15
⊢
(deg‘0𝑝) ∈
ℕ0 |
| 29 | | c0ex 11234 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
V |
| 30 | 29 | fvconst2 7201 |
. . . . . . . . . . . . . . 15
⊢
((deg‘0𝑝) ∈ ℕ0 →
((ℕ0 × {0})‘(deg‘0𝑝)) =
0) |
| 31 | 28, 30 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
((ℕ0 ×
{0})‘(deg‘0𝑝)) = 0 |
| 32 | 25, 31 | eqtri 2759 |
. . . . . . . . . . . . 13
⊢
((coeff‘0𝑝)‘(deg‘0𝑝))
= 0 |
| 33 | | 0ne1 12316 |
. . . . . . . . . . . . 13
⊢ 0 ≠
1 |
| 34 | 32, 33 | eqnetri 3003 |
. . . . . . . . . . . 12
⊢
((coeff‘0𝑝)‘(deg‘0𝑝))
≠ 1 |
| 35 | | fveq2 6881 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 0𝑝 →
(coeff‘𝑏) =
(coeff‘0𝑝)) |
| 36 | | fveq2 6881 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 0𝑝 →
(deg‘𝑏) =
(deg‘0𝑝)) |
| 37 | 35, 36 | fveq12d 6888 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 0𝑝 →
((coeff‘𝑏)‘(deg‘𝑏)) =
((coeff‘0𝑝)‘(deg‘0𝑝))) |
| 38 | 37 | neeq1d 2992 |
. . . . . . . . . . . 12
⊢ (𝑏 = 0𝑝 →
(((coeff‘𝑏)‘(deg‘𝑏)) ≠ 1 ↔
((coeff‘0𝑝)‘(deg‘0𝑝))
≠ 1)) |
| 39 | 34, 38 | mpbiri 258 |
. . . . . . . . . . 11
⊢ (𝑏 = 0𝑝 →
((coeff‘𝑏)‘(deg‘𝑏)) ≠ 1) |
| 40 | 39 | necon2i 2967 |
. . . . . . . . . 10
⊢
(((coeff‘𝑏)‘(deg‘𝑏)) = 1 → 𝑏 ≠ 0𝑝) |
| 41 | 40 | ad2antll 729 |
. . . . . . . . 9
⊢ ((𝑏 ∈ (Poly‘ℚ)
∧ ((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)) → 𝑏 ≠
0𝑝) |
| 42 | | eldifsn 4767 |
. . . . . . . . 9
⊢ (𝑏 ∈ ((Poly‘ℚ)
∖ {0𝑝}) ↔ (𝑏 ∈ (Poly‘ℚ) ∧ 𝑏 ≠
0𝑝)) |
| 43 | 23, 41, 42 | sylanbrc 583 |
. . . . . . . 8
⊢ ((𝑏 ∈ (Poly‘ℚ)
∧ ((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)) → 𝑏 ∈ ((Poly‘ℚ)
∖ {0𝑝})) |
| 44 | | simprl 770 |
. . . . . . . 8
⊢ ((𝑏 ∈ (Poly‘ℚ)
∧ ((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)) → (𝑏‘𝑎) = 0) |
| 45 | 43, 44 | jca 511 |
. . . . . . 7
⊢ ((𝑏 ∈ (Poly‘ℚ)
∧ ((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)) → (𝑏 ∈ ((Poly‘ℚ)
∖ {0𝑝}) ∧ (𝑏‘𝑎) = 0)) |
| 46 | 45 | reximi2 3070 |
. . . . . 6
⊢
(∃𝑏 ∈
(Poly‘ℚ)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1) → ∃𝑏 ∈ ((Poly‘ℚ) ∖
{0𝑝})(𝑏‘𝑎) = 0) |
| 47 | 46 | anim2i 617 |
. . . . 5
⊢ ((𝑎 ∈ ℂ ∧
∃𝑏 ∈
(Poly‘ℚ)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)) → (𝑎 ∈ ℂ ∧ ∃𝑏 ∈ ((Poly‘ℚ)
∖ {0𝑝})(𝑏‘𝑎) = 0)) |
| 48 | | elqaa 26287 |
. . . . 5
⊢ (𝑎 ∈ 𝔸 ↔ (𝑎 ∈ ℂ ∧
∃𝑏 ∈
((Poly‘ℚ) ∖ {0𝑝})(𝑏‘𝑎) = 0)) |
| 49 | 47, 48 | sylibr 234 |
. . . 4
⊢ ((𝑎 ∈ ℂ ∧
∃𝑏 ∈
(Poly‘ℚ)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)) → 𝑎 ∈ 𝔸) |
| 50 | 22, 49 | impbii 209 |
. . 3
⊢ (𝑎 ∈ 𝔸 ↔ (𝑎 ∈ ℂ ∧
∃𝑏 ∈
(Poly‘ℚ)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1))) |
| 51 | 1, 5, 50 | 3bitr4ri 304 |
. 2
⊢ (𝑎 ∈ 𝔸 ↔ 𝑎 ∈
(IntgOver‘ℚ)) |
| 52 | 51 | eqriv 2733 |
1
⊢ 𝔸
= (IntgOver‘ℚ) |