| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-kq | Structured version Visualization version GIF version | ||
| Description: Define the Kolmogorov quotient. This is a function on topologies which maps a topology to its quotient under the topological distinguishability map, which takes a point to the set of open sets that contain it. Two points are mapped to the same image under this function iff they are topologically indistinguishable. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| df-kq | ⊢ KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ckq 23578 | . 2 class KQ | |
| 2 | vj | . . 3 setvar 𝑗 | |
| 3 | ctop 22778 | . . 3 class Top | |
| 4 | 2 | cv 1539 | . . . 4 class 𝑗 |
| 5 | vx | . . . . 5 setvar 𝑥 | |
| 6 | 4 | cuni 4858 | . . . . 5 class ∪ 𝑗 |
| 7 | vy | . . . . . . 7 setvar 𝑦 | |
| 8 | 5, 7 | wel 2110 | . . . . . 6 wff 𝑥 ∈ 𝑦 |
| 9 | 8, 7, 4 | crab 3394 | . . . . 5 class {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦} |
| 10 | 5, 6, 9 | cmpt 5173 | . . . 4 class (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦}) |
| 11 | cqtop 17407 | . . . 4 class qTop | |
| 12 | 4, 10, 11 | co 7349 | . . 3 class (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦})) |
| 13 | 2, 3, 12 | cmpt 5173 | . 2 class (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦}))) |
| 14 | 1, 13 | wceq 1540 | 1 wff KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦}))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: kqval 23611 kqtop 23630 kqf 23632 |
| Copyright terms: Public domain | W3C validator |