MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-kq Structured version   Visualization version   GIF version

Definition df-kq 23579
Description: Define the Kolmogorov quotient. This is a function on topologies which maps a topology to its quotient under the topological distinguishability map, which takes a point to the set of open sets that contain it. Two points are mapped to the same image under this function iff they are topologically indistinguishable. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
df-kq KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 𝑗 ↦ {𝑦𝑗𝑥𝑦})))
Distinct variable group:   𝑥,𝑗,𝑦

Detailed syntax breakdown of Definition df-kq
StepHypRef Expression
1 ckq 23578 . 2 class KQ
2 vj . . 3 setvar 𝑗
3 ctop 22778 . . 3 class Top
42cv 1539 . . . 4 class 𝑗
5 vx . . . . 5 setvar 𝑥
64cuni 4858 . . . . 5 class 𝑗
7 vy . . . . . . 7 setvar 𝑦
85, 7wel 2110 . . . . . 6 wff 𝑥𝑦
98, 7, 4crab 3394 . . . . 5 class {𝑦𝑗𝑥𝑦}
105, 6, 9cmpt 5173 . . . 4 class (𝑥 𝑗 ↦ {𝑦𝑗𝑥𝑦})
11 cqtop 17407 . . . 4 class qTop
124, 10, 11co 7349 . . 3 class (𝑗 qTop (𝑥 𝑗 ↦ {𝑦𝑗𝑥𝑦}))
132, 3, 12cmpt 5173 . 2 class (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 𝑗 ↦ {𝑦𝑗𝑥𝑦})))
141, 13wceq 1540 1 wff KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 𝑗 ↦ {𝑦𝑗𝑥𝑦})))
Colors of variables: wff setvar class
This definition is referenced by:  kqval  23611  kqtop  23630  kqf  23632
  Copyright terms: Public domain W3C validator