Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-kq | Structured version Visualization version GIF version |
Description: Define the Kolmogorov quotient. This is a function on topologies which maps a topology to its quotient under the topological distinguishability map, which takes a point to the set of open sets that contain it. Two points are mapped to the same image under this function iff they are topologically indistinguishable. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
df-kq | ⊢ KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ckq 22854 | . 2 class KQ | |
2 | vj | . . 3 setvar 𝑗 | |
3 | ctop 22052 | . . 3 class Top | |
4 | 2 | cv 1538 | . . . 4 class 𝑗 |
5 | vx | . . . . 5 setvar 𝑥 | |
6 | 4 | cuni 4839 | . . . . 5 class ∪ 𝑗 |
7 | vy | . . . . . . 7 setvar 𝑦 | |
8 | 5, 7 | wel 2107 | . . . . . 6 wff 𝑥 ∈ 𝑦 |
9 | 8, 7, 4 | crab 3068 | . . . . 5 class {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦} |
10 | 5, 6, 9 | cmpt 5156 | . . . 4 class (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦}) |
11 | cqtop 17224 | . . . 4 class qTop | |
12 | 4, 10, 11 | co 7267 | . . 3 class (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦})) |
13 | 2, 3, 12 | cmpt 5156 | . 2 class (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦}))) |
14 | 1, 13 | wceq 1539 | 1 wff KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦}))) |
Colors of variables: wff setvar class |
This definition is referenced by: kqval 22887 kqtop 22906 kqf 22908 |
Copyright terms: Public domain | W3C validator |