| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-kq | Structured version Visualization version GIF version | ||
| Description: Define the Kolmogorov quotient. This is a function on topologies which maps a topology to its quotient under the topological distinguishability map, which takes a point to the set of open sets that contain it. Two points are mapped to the same image under this function iff they are topologically indistinguishable. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| df-kq | ⊢ KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ckq 23636 | . 2 class KQ | |
| 2 | vj | . . 3 setvar 𝑗 | |
| 3 | ctop 22836 | . . 3 class Top | |
| 4 | 2 | cv 1539 | . . . 4 class 𝑗 |
| 5 | vx | . . . . 5 setvar 𝑥 | |
| 6 | 4 | cuni 4888 | . . . . 5 class ∪ 𝑗 |
| 7 | vy | . . . . . . 7 setvar 𝑦 | |
| 8 | 5, 7 | wel 2110 | . . . . . 6 wff 𝑥 ∈ 𝑦 |
| 9 | 8, 7, 4 | crab 3420 | . . . . 5 class {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦} |
| 10 | 5, 6, 9 | cmpt 5206 | . . . 4 class (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦}) |
| 11 | cqtop 17522 | . . . 4 class qTop | |
| 12 | 4, 10, 11 | co 7410 | . . 3 class (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦})) |
| 13 | 2, 3, 12 | cmpt 5206 | . 2 class (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦}))) |
| 14 | 1, 13 | wceq 1540 | 1 wff KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦}))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: kqval 23669 kqtop 23688 kqf 23690 |
| Copyright terms: Public domain | W3C validator |