MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqtop Structured version   Visualization version   GIF version

Theorem kqtop 23660
Description: The Kolmogorov quotient is a topology on the quotient set. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
kqtop (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Top)

Proof of Theorem kqtop
Dummy variables 𝑥 𝑦 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 toptopon2 22833 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
2 eqid 2731 . . . . 5 (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) = (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})
32kqtopon 23642 . . . 4 (𝐽 ∈ (TopOn‘ 𝐽) → (KQ‘𝐽) ∈ (TopOn‘ran (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})))
41, 3sylbi 217 . . 3 (𝐽 ∈ Top → (KQ‘𝐽) ∈ (TopOn‘ran (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})))
5 topontop 22828 . . 3 ((KQ‘𝐽) ∈ (TopOn‘ran (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})) → (KQ‘𝐽) ∈ Top)
64, 5syl 17 . 2 (𝐽 ∈ Top → (KQ‘𝐽) ∈ Top)
7 0opn 22819 . . . 4 ((KQ‘𝐽) ∈ Top → ∅ ∈ (KQ‘𝐽))
8 elfvdm 6856 . . . 4 (∅ ∈ (KQ‘𝐽) → 𝐽 ∈ dom KQ)
97, 8syl 17 . . 3 ((KQ‘𝐽) ∈ Top → 𝐽 ∈ dom KQ)
10 ovex 7379 . . . 4 (𝑗 qTop (𝑥 𝑗 ↦ {𝑦𝑗𝑥𝑦})) ∈ V
11 df-kq 23609 . . . 4 KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 𝑗 ↦ {𝑦𝑗𝑥𝑦})))
1210, 11dmmpti 6625 . . 3 dom KQ = Top
139, 12eleqtrdi 2841 . 2 ((KQ‘𝐽) ∈ Top → 𝐽 ∈ Top)
146, 13impbii 209 1 (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2111  {crab 3395  c0 4280   cuni 4856  cmpt 5170  dom cdm 5614  ran crn 5615  cfv 6481  (class class class)co 7346   qTop cqtop 17407  Topctop 22808  TopOnctopon 22825  KQckq 23608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-qtop 17411  df-top 22809  df-topon 22826  df-kq 23609
This theorem is referenced by:  kqt0  23661  kqreg  23666  kqnrm  23667
  Copyright terms: Public domain W3C validator