MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqtop Structured version   Visualization version   GIF version

Theorem kqtop 22804
Description: The Kolmogorov quotient is a topology on the quotient set. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
kqtop (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Top)

Proof of Theorem kqtop
Dummy variables 𝑥 𝑦 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 toptopon2 21975 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
2 eqid 2738 . . . . 5 (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) = (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})
32kqtopon 22786 . . . 4 (𝐽 ∈ (TopOn‘ 𝐽) → (KQ‘𝐽) ∈ (TopOn‘ran (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})))
41, 3sylbi 216 . . 3 (𝐽 ∈ Top → (KQ‘𝐽) ∈ (TopOn‘ran (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})))
5 topontop 21970 . . 3 ((KQ‘𝐽) ∈ (TopOn‘ran (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})) → (KQ‘𝐽) ∈ Top)
64, 5syl 17 . 2 (𝐽 ∈ Top → (KQ‘𝐽) ∈ Top)
7 0opn 21961 . . . 4 ((KQ‘𝐽) ∈ Top → ∅ ∈ (KQ‘𝐽))
8 elfvdm 6788 . . . 4 (∅ ∈ (KQ‘𝐽) → 𝐽 ∈ dom KQ)
97, 8syl 17 . . 3 ((KQ‘𝐽) ∈ Top → 𝐽 ∈ dom KQ)
10 ovex 7288 . . . 4 (𝑗 qTop (𝑥 𝑗 ↦ {𝑦𝑗𝑥𝑦})) ∈ V
11 df-kq 22753 . . . 4 KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 𝑗 ↦ {𝑦𝑗𝑥𝑦})))
1210, 11dmmpti 6561 . . 3 dom KQ = Top
139, 12eleqtrdi 2849 . 2 ((KQ‘𝐽) ∈ Top → 𝐽 ∈ Top)
146, 13impbii 208 1 (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2108  {crab 3067  c0 4253   cuni 4836  cmpt 5153  dom cdm 5580  ran crn 5581  cfv 6418  (class class class)co 7255   qTop cqtop 17131  Topctop 21950  TopOnctopon 21967  KQckq 22752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-qtop 17135  df-top 21951  df-topon 21968  df-kq 22753
This theorem is referenced by:  kqt0  22805  kqreg  22810  kqnrm  22811
  Copyright terms: Public domain W3C validator