![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > kqtop | Structured version Visualization version GIF version |
Description: The Kolmogorov quotient is a topology on the quotient set. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
kqtop | ⊢ (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2799 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | toptopon 21050 | . . . 4 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
3 | eqid 2799 | . . . . 5 ⊢ (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) = (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
4 | 3 | kqtopon 21859 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (KQ‘𝐽) ∈ (TopOn‘ran (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}))) |
5 | 2, 4 | sylbi 209 | . . 3 ⊢ (𝐽 ∈ Top → (KQ‘𝐽) ∈ (TopOn‘ran (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}))) |
6 | topontop 21046 | . . 3 ⊢ ((KQ‘𝐽) ∈ (TopOn‘ran (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦})) → (KQ‘𝐽) ∈ Top) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝐽 ∈ Top → (KQ‘𝐽) ∈ Top) |
8 | 0opn 21037 | . . . 4 ⊢ ((KQ‘𝐽) ∈ Top → ∅ ∈ (KQ‘𝐽)) | |
9 | elfvdm 6443 | . . . 4 ⊢ (∅ ∈ (KQ‘𝐽) → 𝐽 ∈ dom KQ) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ ((KQ‘𝐽) ∈ Top → 𝐽 ∈ dom KQ) |
11 | ovex 6910 | . . . 4 ⊢ (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦})) ∈ V | |
12 | df-kq 21826 | . . . 4 ⊢ KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦}))) | |
13 | 11, 12 | dmmpti 6234 | . . 3 ⊢ dom KQ = Top |
14 | 10, 13 | syl6eleq 2888 | . 2 ⊢ ((KQ‘𝐽) ∈ Top → 𝐽 ∈ Top) |
15 | 7, 14 | impbii 201 | 1 ⊢ (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∈ wcel 2157 {crab 3093 ∅c0 4115 ∪ cuni 4628 ↦ cmpt 4922 dom cdm 5312 ran crn 5313 ‘cfv 6101 (class class class)co 6878 qTop cqtop 16478 Topctop 21026 TopOnctopon 21043 KQckq 21825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-qtop 16482 df-top 21027 df-topon 21044 df-kq 21826 |
This theorem is referenced by: kqt0 21878 kqreg 21883 kqnrm 21884 |
Copyright terms: Public domain | W3C validator |