| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > kqtop | Structured version Visualization version GIF version | ||
| Description: The Kolmogorov quotient is a topology on the quotient set. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| kqtop | ⊢ (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toptopon2 22856 | . . . 4 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
| 2 | eqid 2735 | . . . . 5 ⊢ (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) = (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
| 3 | 2 | kqtopon 23665 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (KQ‘𝐽) ∈ (TopOn‘ran (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}))) |
| 4 | 1, 3 | sylbi 217 | . . 3 ⊢ (𝐽 ∈ Top → (KQ‘𝐽) ∈ (TopOn‘ran (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}))) |
| 5 | topontop 22851 | . . 3 ⊢ ((KQ‘𝐽) ∈ (TopOn‘ran (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦})) → (KQ‘𝐽) ∈ Top) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝐽 ∈ Top → (KQ‘𝐽) ∈ Top) |
| 7 | 0opn 22842 | . . . 4 ⊢ ((KQ‘𝐽) ∈ Top → ∅ ∈ (KQ‘𝐽)) | |
| 8 | elfvdm 6913 | . . . 4 ⊢ (∅ ∈ (KQ‘𝐽) → 𝐽 ∈ dom KQ) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ ((KQ‘𝐽) ∈ Top → 𝐽 ∈ dom KQ) |
| 10 | ovex 7438 | . . . 4 ⊢ (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦})) ∈ V | |
| 11 | df-kq 23632 | . . . 4 ⊢ KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦}))) | |
| 12 | 10, 11 | dmmpti 6682 | . . 3 ⊢ dom KQ = Top |
| 13 | 9, 12 | eleqtrdi 2844 | . 2 ⊢ ((KQ‘𝐽) ∈ Top → 𝐽 ∈ Top) |
| 14 | 6, 13 | impbii 209 | 1 ⊢ (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2108 {crab 3415 ∅c0 4308 ∪ cuni 4883 ↦ cmpt 5201 dom cdm 5654 ran crn 5655 ‘cfv 6531 (class class class)co 7405 qTop cqtop 17517 Topctop 22831 TopOnctopon 22848 KQckq 23631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-qtop 17521 df-top 22832 df-topon 22849 df-kq 23632 |
| This theorem is referenced by: kqt0 23684 kqreg 23689 kqnrm 23690 |
| Copyright terms: Public domain | W3C validator |