Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > kqtop | Structured version Visualization version GIF version |
Description: The Kolmogorov quotient is a topology on the quotient set. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
kqtop | ⊢ (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toptopon2 22067 | . . . 4 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
2 | eqid 2738 | . . . . 5 ⊢ (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) = (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
3 | 2 | kqtopon 22878 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (KQ‘𝐽) ∈ (TopOn‘ran (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}))) |
4 | 1, 3 | sylbi 216 | . . 3 ⊢ (𝐽 ∈ Top → (KQ‘𝐽) ∈ (TopOn‘ran (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}))) |
5 | topontop 22062 | . . 3 ⊢ ((KQ‘𝐽) ∈ (TopOn‘ran (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦})) → (KQ‘𝐽) ∈ Top) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐽 ∈ Top → (KQ‘𝐽) ∈ Top) |
7 | 0opn 22053 | . . . 4 ⊢ ((KQ‘𝐽) ∈ Top → ∅ ∈ (KQ‘𝐽)) | |
8 | elfvdm 6806 | . . . 4 ⊢ (∅ ∈ (KQ‘𝐽) → 𝐽 ∈ dom KQ) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ ((KQ‘𝐽) ∈ Top → 𝐽 ∈ dom KQ) |
10 | ovex 7308 | . . . 4 ⊢ (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦})) ∈ V | |
11 | df-kq 22845 | . . . 4 ⊢ KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦}))) | |
12 | 10, 11 | dmmpti 6577 | . . 3 ⊢ dom KQ = Top |
13 | 9, 12 | eleqtrdi 2849 | . 2 ⊢ ((KQ‘𝐽) ∈ Top → 𝐽 ∈ Top) |
14 | 6, 13 | impbii 208 | 1 ⊢ (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2106 {crab 3068 ∅c0 4256 ∪ cuni 4839 ↦ cmpt 5157 dom cdm 5589 ran crn 5590 ‘cfv 6433 (class class class)co 7275 qTop cqtop 17214 Topctop 22042 TopOnctopon 22059 KQckq 22844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-qtop 17218 df-top 22043 df-topon 22060 df-kq 22845 |
This theorem is referenced by: kqt0 22897 kqreg 22902 kqnrm 22903 |
Copyright terms: Public domain | W3C validator |