MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqtop Structured version   Visualization version   GIF version

Theorem kqtop 23630
Description: The Kolmogorov quotient is a topology on the quotient set. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
kqtop (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Top)

Proof of Theorem kqtop
Dummy variables 𝑥 𝑦 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 toptopon2 22803 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
2 eqid 2729 . . . . 5 (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) = (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})
32kqtopon 23612 . . . 4 (𝐽 ∈ (TopOn‘ 𝐽) → (KQ‘𝐽) ∈ (TopOn‘ran (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})))
41, 3sylbi 217 . . 3 (𝐽 ∈ Top → (KQ‘𝐽) ∈ (TopOn‘ran (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})))
5 topontop 22798 . . 3 ((KQ‘𝐽) ∈ (TopOn‘ran (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})) → (KQ‘𝐽) ∈ Top)
64, 5syl 17 . 2 (𝐽 ∈ Top → (KQ‘𝐽) ∈ Top)
7 0opn 22789 . . . 4 ((KQ‘𝐽) ∈ Top → ∅ ∈ (KQ‘𝐽))
8 elfvdm 6857 . . . 4 (∅ ∈ (KQ‘𝐽) → 𝐽 ∈ dom KQ)
97, 8syl 17 . . 3 ((KQ‘𝐽) ∈ Top → 𝐽 ∈ dom KQ)
10 ovex 7382 . . . 4 (𝑗 qTop (𝑥 𝑗 ↦ {𝑦𝑗𝑥𝑦})) ∈ V
11 df-kq 23579 . . . 4 KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 𝑗 ↦ {𝑦𝑗𝑥𝑦})))
1210, 11dmmpti 6626 . . 3 dom KQ = Top
139, 12eleqtrdi 2838 . 2 ((KQ‘𝐽) ∈ Top → 𝐽 ∈ Top)
146, 13impbii 209 1 (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  {crab 3394  c0 4284   cuni 4858  cmpt 5173  dom cdm 5619  ran crn 5620  cfv 6482  (class class class)co 7349   qTop cqtop 17407  Topctop 22778  TopOnctopon 22795  KQckq 23578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-qtop 17411  df-top 22779  df-topon 22796  df-kq 23579
This theorem is referenced by:  kqt0  23631  kqreg  23636  kqnrm  23637
  Copyright terms: Public domain W3C validator