| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > kqtop | Structured version Visualization version GIF version | ||
| Description: The Kolmogorov quotient is a topology on the quotient set. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| kqtop | ⊢ (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toptopon2 22812 | . . . 4 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
| 2 | eqid 2730 | . . . . 5 ⊢ (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) = (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
| 3 | 2 | kqtopon 23621 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (KQ‘𝐽) ∈ (TopOn‘ran (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}))) |
| 4 | 1, 3 | sylbi 217 | . . 3 ⊢ (𝐽 ∈ Top → (KQ‘𝐽) ∈ (TopOn‘ran (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}))) |
| 5 | topontop 22807 | . . 3 ⊢ ((KQ‘𝐽) ∈ (TopOn‘ran (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦})) → (KQ‘𝐽) ∈ Top) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝐽 ∈ Top → (KQ‘𝐽) ∈ Top) |
| 7 | 0opn 22798 | . . . 4 ⊢ ((KQ‘𝐽) ∈ Top → ∅ ∈ (KQ‘𝐽)) | |
| 8 | elfvdm 6898 | . . . 4 ⊢ (∅ ∈ (KQ‘𝐽) → 𝐽 ∈ dom KQ) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ ((KQ‘𝐽) ∈ Top → 𝐽 ∈ dom KQ) |
| 10 | ovex 7423 | . . . 4 ⊢ (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦})) ∈ V | |
| 11 | df-kq 23588 | . . . 4 ⊢ KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦}))) | |
| 12 | 10, 11 | dmmpti 6665 | . . 3 ⊢ dom KQ = Top |
| 13 | 9, 12 | eleqtrdi 2839 | . 2 ⊢ ((KQ‘𝐽) ∈ Top → 𝐽 ∈ Top) |
| 14 | 6, 13 | impbii 209 | 1 ⊢ (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 {crab 3408 ∅c0 4299 ∪ cuni 4874 ↦ cmpt 5191 dom cdm 5641 ran crn 5642 ‘cfv 6514 (class class class)co 7390 qTop cqtop 17473 Topctop 22787 TopOnctopon 22804 KQckq 23587 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-qtop 17477 df-top 22788 df-topon 22805 df-kq 23588 |
| This theorem is referenced by: kqt0 23640 kqreg 23645 kqnrm 23646 |
| Copyright terms: Public domain | W3C validator |