MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqval Structured version   Visualization version   GIF version

Theorem kqval 22336
Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqval (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop 𝐹))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem kqval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 topontop 21523 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 id 22 . . . . 5 (𝑗 = 𝐽𝑗 = 𝐽)
3 unieq 4851 . . . . . 6 (𝑗 = 𝐽 𝑗 = 𝐽)
4 rabeq 3485 . . . . . 6 (𝑗 = 𝐽 → {𝑦𝑗𝑥𝑦} = {𝑦𝐽𝑥𝑦})
53, 4mpteq12dv 5153 . . . . 5 (𝑗 = 𝐽 → (𝑥 𝑗 ↦ {𝑦𝑗𝑥𝑦}) = (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}))
62, 5oveq12d 7176 . . . 4 (𝑗 = 𝐽 → (𝑗 qTop (𝑥 𝑗 ↦ {𝑦𝑗𝑥𝑦})) = (𝐽 qTop (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})))
7 df-kq 22304 . . . 4 KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 𝑗 ↦ {𝑦𝑗𝑥𝑦})))
8 ovex 7191 . . . 4 (𝐽 qTop (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})) ∈ V
96, 7, 8fvmpt 6770 . . 3 (𝐽 ∈ Top → (KQ‘𝐽) = (𝐽 qTop (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})))
101, 9syl 17 . 2 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})))
11 kqval.2 . . . 4 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
12 toponuni 21524 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1312mpteq1d 5157 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦}) = (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}))
1411, 13syl5eq 2870 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 = (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}))
1514oveq2d 7174 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 qTop 𝐹) = (𝐽 qTop (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})))
1610, 15eqtr4d 2861 1 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  {crab 3144   cuni 4840  cmpt 5148  cfv 6357  (class class class)co 7158   qTop cqtop 16778  Topctop 21503  TopOnctopon 21520  KQckq 22303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-iota 6316  df-fun 6359  df-fv 6365  df-ov 7161  df-topon 21521  df-kq 22304
This theorem is referenced by:  kqtopon  22337  kqid  22338  kqopn  22344  kqcld  22345  t0kq  22428
  Copyright terms: Public domain W3C validator