MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqval Structured version   Visualization version   GIF version

Theorem kqval 23629
Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqval (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop 𝐹))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem kqval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 topontop 22816 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 id 22 . . . . 5 (𝑗 = 𝐽𝑗 = 𝐽)
3 unieq 4872 . . . . . 6 (𝑗 = 𝐽 𝑗 = 𝐽)
4 rabeq 3411 . . . . . 6 (𝑗 = 𝐽 → {𝑦𝑗𝑥𝑦} = {𝑦𝐽𝑥𝑦})
53, 4mpteq12dv 5182 . . . . 5 (𝑗 = 𝐽 → (𝑥 𝑗 ↦ {𝑦𝑗𝑥𝑦}) = (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}))
62, 5oveq12d 7371 . . . 4 (𝑗 = 𝐽 → (𝑗 qTop (𝑥 𝑗 ↦ {𝑦𝑗𝑥𝑦})) = (𝐽 qTop (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})))
7 df-kq 23597 . . . 4 KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 𝑗 ↦ {𝑦𝑗𝑥𝑦})))
8 ovex 7386 . . . 4 (𝐽 qTop (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})) ∈ V
96, 7, 8fvmpt 6934 . . 3 (𝐽 ∈ Top → (KQ‘𝐽) = (𝐽 qTop (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})))
101, 9syl 17 . 2 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})))
11 kqval.2 . . . 4 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
12 toponuni 22817 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1312mpteq1d 5185 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦}) = (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}))
1411, 13eqtrid 2776 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 = (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}))
1514oveq2d 7369 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 qTop 𝐹) = (𝐽 qTop (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})))
1610, 15eqtr4d 2767 1 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3396   cuni 4861  cmpt 5176  cfv 6486  (class class class)co 7353   qTop cqtop 17425  Topctop 22796  TopOnctopon 22813  KQckq 23596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-topon 22814  df-kq 23597
This theorem is referenced by:  kqtopon  23630  kqid  23631  kqopn  23637  kqcld  23638  t0kq  23721
  Copyright terms: Public domain W3C validator