MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqval Structured version   Visualization version   GIF version

Theorem kqval 23229
Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ π‘₯ ∈ 𝑦})
Assertion
Ref Expression
kqval (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ (KQβ€˜π½) = (𝐽 qTop 𝐹))
Distinct variable groups:   π‘₯,𝑦,𝐽   π‘₯,𝑋,𝑦
Allowed substitution hints:   𝐹(π‘₯,𝑦)

Proof of Theorem kqval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 topontop 22414 . . 3 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝐽 ∈ Top)
2 id 22 . . . . 5 (𝑗 = 𝐽 β†’ 𝑗 = 𝐽)
3 unieq 4919 . . . . . 6 (𝑗 = 𝐽 β†’ βˆͺ 𝑗 = βˆͺ 𝐽)
4 rabeq 3446 . . . . . 6 (𝑗 = 𝐽 β†’ {𝑦 ∈ 𝑗 ∣ π‘₯ ∈ 𝑦} = {𝑦 ∈ 𝐽 ∣ π‘₯ ∈ 𝑦})
53, 4mpteq12dv 5239 . . . . 5 (𝑗 = 𝐽 β†’ (π‘₯ ∈ βˆͺ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ π‘₯ ∈ 𝑦}) = (π‘₯ ∈ βˆͺ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ π‘₯ ∈ 𝑦}))
62, 5oveq12d 7426 . . . 4 (𝑗 = 𝐽 β†’ (𝑗 qTop (π‘₯ ∈ βˆͺ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ π‘₯ ∈ 𝑦})) = (𝐽 qTop (π‘₯ ∈ βˆͺ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ π‘₯ ∈ 𝑦})))
7 df-kq 23197 . . . 4 KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (π‘₯ ∈ βˆͺ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ π‘₯ ∈ 𝑦})))
8 ovex 7441 . . . 4 (𝐽 qTop (π‘₯ ∈ βˆͺ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ π‘₯ ∈ 𝑦})) ∈ V
96, 7, 8fvmpt 6998 . . 3 (𝐽 ∈ Top β†’ (KQβ€˜π½) = (𝐽 qTop (π‘₯ ∈ βˆͺ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ π‘₯ ∈ 𝑦})))
101, 9syl 17 . 2 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ (KQβ€˜π½) = (𝐽 qTop (π‘₯ ∈ βˆͺ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ π‘₯ ∈ 𝑦})))
11 kqval.2 . . . 4 𝐹 = (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ π‘₯ ∈ 𝑦})
12 toponuni 22415 . . . . 5 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝑋 = βˆͺ 𝐽)
1312mpteq1d 5243 . . . 4 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ π‘₯ ∈ 𝑦}) = (π‘₯ ∈ βˆͺ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ π‘₯ ∈ 𝑦}))
1411, 13eqtrid 2784 . . 3 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝐹 = (π‘₯ ∈ βˆͺ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ π‘₯ ∈ 𝑦}))
1514oveq2d 7424 . 2 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ (𝐽 qTop 𝐹) = (𝐽 qTop (π‘₯ ∈ βˆͺ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ π‘₯ ∈ 𝑦})))
1610, 15eqtr4d 2775 1 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ (KQβ€˜π½) = (𝐽 qTop 𝐹))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  {crab 3432  βˆͺ cuni 4908   ↦ cmpt 5231  β€˜cfv 6543  (class class class)co 7408   qTop cqtop 17448  Topctop 22394  TopOnctopon 22411  KQckq 23196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7411  df-topon 22412  df-kq 23197
This theorem is referenced by:  kqtopon  23230  kqid  23231  kqopn  23237  kqcld  23238  t0kq  23321
  Copyright terms: Public domain W3C validator