| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > kqval | Structured version Visualization version GIF version | ||
| Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| kqval.2 | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
| Ref | Expression |
|---|---|
| kqval | ⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop 22807 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
| 2 | id 22 | . . . . 5 ⊢ (𝑗 = 𝐽 → 𝑗 = 𝐽) | |
| 3 | unieq 4885 | . . . . . 6 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
| 4 | rabeq 3423 | . . . . . 6 ⊢ (𝑗 = 𝐽 → {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦} = {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
| 5 | 3, 4 | mpteq12dv 5197 | . . . . 5 ⊢ (𝑗 = 𝐽 → (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦}) = (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦})) |
| 6 | 2, 5 | oveq12d 7408 | . . . 4 ⊢ (𝑗 = 𝐽 → (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦})) = (𝐽 qTop (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}))) |
| 7 | df-kq 23588 | . . . 4 ⊢ KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦}))) | |
| 8 | ovex 7423 | . . . 4 ⊢ (𝐽 qTop (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦})) ∈ V | |
| 9 | 6, 7, 8 | fvmpt 6971 | . . 3 ⊢ (𝐽 ∈ Top → (KQ‘𝐽) = (𝐽 qTop (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}))) |
| 10 | 1, 9 | syl 17 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}))) |
| 11 | kqval.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
| 12 | toponuni 22808 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
| 13 | 12 | mpteq1d 5200 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) = (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦})) |
| 14 | 11, 13 | eqtrid 2777 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 = (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦})) |
| 15 | 14 | oveq2d 7406 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 qTop 𝐹) = (𝐽 qTop (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}))) |
| 16 | 10, 15 | eqtr4d 2768 | 1 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3408 ∪ cuni 4874 ↦ cmpt 5191 ‘cfv 6514 (class class class)co 7390 qTop cqtop 17473 Topctop 22787 TopOnctopon 22804 KQckq 23587 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-topon 22805 df-kq 23588 |
| This theorem is referenced by: kqtopon 23621 kqid 23622 kqopn 23628 kqcld 23629 t0kq 23712 |
| Copyright terms: Public domain | W3C validator |