MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqval Structured version   Visualization version   GIF version

Theorem kqval 22053
Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqval (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop 𝐹))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem kqval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 topontop 21240 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 id 22 . . . . 5 (𝑗 = 𝐽𝑗 = 𝐽)
3 unieq 4716 . . . . . 6 (𝑗 = 𝐽 𝑗 = 𝐽)
4 rabeq 3399 . . . . . 6 (𝑗 = 𝐽 → {𝑦𝑗𝑥𝑦} = {𝑦𝐽𝑥𝑦})
53, 4mpteq12dv 5008 . . . . 5 (𝑗 = 𝐽 → (𝑥 𝑗 ↦ {𝑦𝑗𝑥𝑦}) = (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}))
62, 5oveq12d 6992 . . . 4 (𝑗 = 𝐽 → (𝑗 qTop (𝑥 𝑗 ↦ {𝑦𝑗𝑥𝑦})) = (𝐽 qTop (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})))
7 df-kq 22021 . . . 4 KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 𝑗 ↦ {𝑦𝑗𝑥𝑦})))
8 ovex 7006 . . . 4 (𝐽 qTop (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})) ∈ V
96, 7, 8fvmpt 6593 . . 3 (𝐽 ∈ Top → (KQ‘𝐽) = (𝐽 qTop (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})))
101, 9syl 17 . 2 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})))
11 kqval.2 . . . 4 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
12 toponuni 21241 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1312mpteq1d 5012 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦}) = (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}))
1411, 13syl5eq 2819 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 = (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}))
1514oveq2d 6990 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 qTop 𝐹) = (𝐽 qTop (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})))
1610, 15eqtr4d 2810 1 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1508  wcel 2051  {crab 3085   cuni 4708  cmpt 5004  cfv 6185  (class class class)co 6974   qTop cqtop 16630  Topctop 21220  TopOnctopon 21237  KQckq 22020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ral 3086  df-rex 3087  df-rab 3090  df-v 3410  df-sbc 3675  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-br 4926  df-opab 4988  df-mpt 5005  df-id 5308  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-iota 6149  df-fun 6187  df-fv 6193  df-ov 6977  df-topon 21238  df-kq 22021
This theorem is referenced by:  kqtopon  22054  kqid  22055  kqopn  22061  kqcld  22062  t0kq  22145
  Copyright terms: Public domain W3C validator