MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqf Structured version   Visualization version   GIF version

Theorem kqf 23755
Description: The Kolmogorov quotient is a topology on the quotient set. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
kqf KQ:Top⟶Kol2

Proof of Theorem kqf
Dummy variables 𝑥 𝑦 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7464 . . 3 (𝑗 qTop (𝑥 𝑗 ↦ {𝑦𝑗𝑥𝑦})) ∈ V
2 df-kq 23702 . . 3 KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 𝑗 ↦ {𝑦𝑗𝑥𝑦})))
31, 2fnmpti 6711 . 2 KQ Fn Top
4 kqt0 23754 . . . 4 (𝑥 ∈ Top ↔ (KQ‘𝑥) ∈ Kol2)
54biimpi 216 . . 3 (𝑥 ∈ Top → (KQ‘𝑥) ∈ Kol2)
65rgen 3063 . 2 𝑥 ∈ Top (KQ‘𝑥) ∈ Kol2
7 ffnfv 7139 . 2 (KQ:Top⟶Kol2 ↔ (KQ Fn Top ∧ ∀𝑥 ∈ Top (KQ‘𝑥) ∈ Kol2))
83, 6, 7mpbir2an 711 1 KQ:Top⟶Kol2
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  wral 3061  {crab 3436   cuni 4907  cmpt 5225   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431   qTop cqtop 17548  Topctop 22899  Kol2ct0 23314  KQckq 23701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-qtop 17552  df-top 22900  df-topon 22917  df-t0 23321  df-kq 23702
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator