![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > kqf | Structured version Visualization version GIF version |
Description: The Kolmogorov quotient is a topology on the quotient set. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
kqf | ⊢ KQ:Top⟶Kol2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7481 | . . 3 ⊢ (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦})) ∈ V | |
2 | df-kq 23723 | . . 3 ⊢ KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦}))) | |
3 | 1, 2 | fnmpti 6723 | . 2 ⊢ KQ Fn Top |
4 | kqt0 23775 | . . . 4 ⊢ (𝑥 ∈ Top ↔ (KQ‘𝑥) ∈ Kol2) | |
5 | 4 | biimpi 216 | . . 3 ⊢ (𝑥 ∈ Top → (KQ‘𝑥) ∈ Kol2) |
6 | 5 | rgen 3069 | . 2 ⊢ ∀𝑥 ∈ Top (KQ‘𝑥) ∈ Kol2 |
7 | ffnfv 7153 | . 2 ⊢ (KQ:Top⟶Kol2 ↔ (KQ Fn Top ∧ ∀𝑥 ∈ Top (KQ‘𝑥) ∈ Kol2)) | |
8 | 3, 6, 7 | mpbir2an 710 | 1 ⊢ KQ:Top⟶Kol2 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∀wral 3067 {crab 3443 ∪ cuni 4931 ↦ cmpt 5249 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 qTop cqtop 17563 Topctop 22920 Kol2ct0 23335 KQckq 23722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-qtop 17567 df-top 22921 df-topon 22938 df-t0 23342 df-kq 23723 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |