![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > kqf | Structured version Visualization version GIF version |
Description: The Kolmogorov quotient is a topology on the quotient set. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
kqf | ⊢ KQ:Top⟶Kol2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 6910 | . . 3 ⊢ (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦})) ∈ V | |
2 | df-kq 21826 | . . 3 ⊢ KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦}))) | |
3 | 1, 2 | fnmpti 6233 | . 2 ⊢ KQ Fn Top |
4 | kqt0 21878 | . . . 4 ⊢ (𝑥 ∈ Top ↔ (KQ‘𝑥) ∈ Kol2) | |
5 | 4 | biimpi 208 | . . 3 ⊢ (𝑥 ∈ Top → (KQ‘𝑥) ∈ Kol2) |
6 | 5 | rgen 3103 | . 2 ⊢ ∀𝑥 ∈ Top (KQ‘𝑥) ∈ Kol2 |
7 | ffnfv 6614 | . 2 ⊢ (KQ:Top⟶Kol2 ↔ (KQ Fn Top ∧ ∀𝑥 ∈ Top (KQ‘𝑥) ∈ Kol2)) | |
8 | 3, 6, 7 | mpbir2an 703 | 1 ⊢ KQ:Top⟶Kol2 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2157 ∀wral 3089 {crab 3093 ∪ cuni 4628 ↦ cmpt 4922 Fn wfn 6096 ⟶wf 6097 ‘cfv 6101 (class class class)co 6878 qTop cqtop 16478 Topctop 21026 Kol2ct0 21439 KQckq 21825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-qtop 16482 df-top 21027 df-topon 21044 df-t0 21446 df-kq 21826 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |