![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > kqf | Structured version Visualization version GIF version |
Description: The Kolmogorov quotient is a topology on the quotient set. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
kqf | β’ KQ:TopβΆKol2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7444 | . . 3 β’ (π qTop (π₯ β βͺ π β¦ {π¦ β π β£ π₯ β π¦})) β V | |
2 | df-kq 23418 | . . 3 β’ KQ = (π β Top β¦ (π qTop (π₯ β βͺ π β¦ {π¦ β π β£ π₯ β π¦}))) | |
3 | 1, 2 | fnmpti 6692 | . 2 β’ KQ Fn Top |
4 | kqt0 23470 | . . . 4 β’ (π₯ β Top β (KQβπ₯) β Kol2) | |
5 | 4 | biimpi 215 | . . 3 β’ (π₯ β Top β (KQβπ₯) β Kol2) |
6 | 5 | rgen 3061 | . 2 β’ βπ₯ β Top (KQβπ₯) β Kol2 |
7 | ffnfv 7119 | . 2 β’ (KQ:TopβΆKol2 β (KQ Fn Top β§ βπ₯ β Top (KQβπ₯) β Kol2)) | |
8 | 3, 6, 7 | mpbir2an 707 | 1 β’ KQ:TopβΆKol2 |
Colors of variables: wff setvar class |
Syntax hints: β wcel 2104 βwral 3059 {crab 3430 βͺ cuni 4907 β¦ cmpt 5230 Fn wfn 6537 βΆwf 6538 βcfv 6542 (class class class)co 7411 qTop cqtop 17453 Topctop 22615 Kol2ct0 23030 KQckq 23417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-qtop 17457 df-top 22616 df-topon 22633 df-t0 23037 df-kq 23418 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |