MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqf Structured version   Visualization version   GIF version

Theorem kqf 23685
Description: The Kolmogorov quotient is a topology on the quotient set. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
kqf KQ:Top⟶Kol2

Proof of Theorem kqf
Dummy variables 𝑥 𝑦 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7438 . . 3 (𝑗 qTop (𝑥 𝑗 ↦ {𝑦𝑗𝑥𝑦})) ∈ V
2 df-kq 23632 . . 3 KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 𝑗 ↦ {𝑦𝑗𝑥𝑦})))
31, 2fnmpti 6681 . 2 KQ Fn Top
4 kqt0 23684 . . . 4 (𝑥 ∈ Top ↔ (KQ‘𝑥) ∈ Kol2)
54biimpi 216 . . 3 (𝑥 ∈ Top → (KQ‘𝑥) ∈ Kol2)
65rgen 3053 . 2 𝑥 ∈ Top (KQ‘𝑥) ∈ Kol2
7 ffnfv 7109 . 2 (KQ:Top⟶Kol2 ↔ (KQ Fn Top ∧ ∀𝑥 ∈ Top (KQ‘𝑥) ∈ Kol2))
83, 6, 7mpbir2an 711 1 KQ:Top⟶Kol2
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  wral 3051  {crab 3415   cuni 4883  cmpt 5201   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405   qTop cqtop 17517  Topctop 22831  Kol2ct0 23244  KQckq 23631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-qtop 17521  df-top 22832  df-topon 22849  df-t0 23251  df-kq 23632
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator