Detailed syntax breakdown of Definition df-lcv
Step | Hyp | Ref
| Expression |
1 | | clcv 36959 |
. 2
class
⋖L |
2 | | vw |
. . 3
setvar 𝑤 |
3 | | cvv 3422 |
. . 3
class
V |
4 | | vt |
. . . . . . . 8
setvar 𝑡 |
5 | 4 | cv 1538 |
. . . . . . 7
class 𝑡 |
6 | 2 | cv 1538 |
. . . . . . . 8
class 𝑤 |
7 | | clss 20108 |
. . . . . . . 8
class
LSubSp |
8 | 6, 7 | cfv 6418 |
. . . . . . 7
class
(LSubSp‘𝑤) |
9 | 5, 8 | wcel 2108 |
. . . . . 6
wff 𝑡 ∈ (LSubSp‘𝑤) |
10 | | vu |
. . . . . . . 8
setvar 𝑢 |
11 | 10 | cv 1538 |
. . . . . . 7
class 𝑢 |
12 | 11, 8 | wcel 2108 |
. . . . . 6
wff 𝑢 ∈ (LSubSp‘𝑤) |
13 | 9, 12 | wa 395 |
. . . . 5
wff (𝑡 ∈ (LSubSp‘𝑤) ∧ 𝑢 ∈ (LSubSp‘𝑤)) |
14 | 5, 11 | wpss 3884 |
. . . . . 6
wff 𝑡 ⊊ 𝑢 |
15 | | vs |
. . . . . . . . . . 11
setvar 𝑠 |
16 | 15 | cv 1538 |
. . . . . . . . . 10
class 𝑠 |
17 | 5, 16 | wpss 3884 |
. . . . . . . . 9
wff 𝑡 ⊊ 𝑠 |
18 | 16, 11 | wpss 3884 |
. . . . . . . . 9
wff 𝑠 ⊊ 𝑢 |
19 | 17, 18 | wa 395 |
. . . . . . . 8
wff (𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢) |
20 | 19, 15, 8 | wrex 3064 |
. . . . . . 7
wff
∃𝑠 ∈
(LSubSp‘𝑤)(𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢) |
21 | 20 | wn 3 |
. . . . . 6
wff ¬
∃𝑠 ∈
(LSubSp‘𝑤)(𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢) |
22 | 14, 21 | wa 395 |
. . . . 5
wff (𝑡 ⊊ 𝑢 ∧ ¬ ∃𝑠 ∈ (LSubSp‘𝑤)(𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢)) |
23 | 13, 22 | wa 395 |
. . . 4
wff ((𝑡 ∈ (LSubSp‘𝑤) ∧ 𝑢 ∈ (LSubSp‘𝑤)) ∧ (𝑡 ⊊ 𝑢 ∧ ¬ ∃𝑠 ∈ (LSubSp‘𝑤)(𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢))) |
24 | 23, 4, 10 | copab 5132 |
. . 3
class
{〈𝑡, 𝑢〉 ∣ ((𝑡 ∈ (LSubSp‘𝑤) ∧ 𝑢 ∈ (LSubSp‘𝑤)) ∧ (𝑡 ⊊ 𝑢 ∧ ¬ ∃𝑠 ∈ (LSubSp‘𝑤)(𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢)))} |
25 | 2, 3, 24 | cmpt 5153 |
. 2
class (𝑤 ∈ V ↦ {〈𝑡, 𝑢〉 ∣ ((𝑡 ∈ (LSubSp‘𝑤) ∧ 𝑢 ∈ (LSubSp‘𝑤)) ∧ (𝑡 ⊊ 𝑢 ∧ ¬ ∃𝑠 ∈ (LSubSp‘𝑤)(𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢)))}) |
26 | 1, 25 | wceq 1539 |
1
wff
⋖L = (𝑤
∈ V ↦ {〈𝑡,
𝑢〉 ∣ ((𝑡 ∈ (LSubSp‘𝑤) ∧ 𝑢 ∈ (LSubSp‘𝑤)) ∧ (𝑡 ⊊ 𝑢 ∧ ¬ ∃𝑠 ∈ (LSubSp‘𝑤)(𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢)))}) |