Detailed syntax breakdown of Definition df-cv
Step | Hyp | Ref
| Expression |
1 | | ccv 29045 |
. 2
class
⋖ℋ |
2 | | vx |
. . . . . . 7
setvar 𝑥 |
3 | 2 | cv 1542 |
. . . . . 6
class 𝑥 |
4 | | cch 29010 |
. . . . . 6
class
Cℋ |
5 | 3, 4 | wcel 2110 |
. . . . 5
wff 𝑥 ∈
Cℋ |
6 | | vy |
. . . . . . 7
setvar 𝑦 |
7 | 6 | cv 1542 |
. . . . . 6
class 𝑦 |
8 | 7, 4 | wcel 2110 |
. . . . 5
wff 𝑦 ∈
Cℋ |
9 | 5, 8 | wa 399 |
. . . 4
wff (𝑥 ∈
Cℋ ∧ 𝑦 ∈ Cℋ
) |
10 | 3, 7 | wpss 3867 |
. . . . 5
wff 𝑥 ⊊ 𝑦 |
11 | | vz |
. . . . . . . . . 10
setvar 𝑧 |
12 | 11 | cv 1542 |
. . . . . . . . 9
class 𝑧 |
13 | 3, 12 | wpss 3867 |
. . . . . . . 8
wff 𝑥 ⊊ 𝑧 |
14 | 12, 7 | wpss 3867 |
. . . . . . . 8
wff 𝑧 ⊊ 𝑦 |
15 | 13, 14 | wa 399 |
. . . . . . 7
wff (𝑥 ⊊ 𝑧 ∧ 𝑧 ⊊ 𝑦) |
16 | 15, 11, 4 | wrex 3062 |
. . . . . 6
wff
∃𝑧 ∈
Cℋ (𝑥 ⊊ 𝑧 ∧ 𝑧 ⊊ 𝑦) |
17 | 16 | wn 3 |
. . . . 5
wff ¬
∃𝑧 ∈
Cℋ (𝑥 ⊊ 𝑧 ∧ 𝑧 ⊊ 𝑦) |
18 | 10, 17 | wa 399 |
. . . 4
wff (𝑥 ⊊ 𝑦 ∧ ¬ ∃𝑧 ∈ Cℋ
(𝑥 ⊊ 𝑧 ∧ 𝑧 ⊊ 𝑦)) |
19 | 9, 18 | wa 399 |
. . 3
wff ((𝑥 ∈
Cℋ ∧ 𝑦 ∈ Cℋ )
∧ (𝑥 ⊊ 𝑦 ∧ ¬ ∃𝑧 ∈
Cℋ (𝑥 ⊊ 𝑧 ∧ 𝑧 ⊊ 𝑦))) |
20 | 19, 2, 6 | copab 5115 |
. 2
class
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈
Cℋ ∧ 𝑦 ∈ Cℋ )
∧ (𝑥 ⊊ 𝑦 ∧ ¬ ∃𝑧 ∈
Cℋ (𝑥 ⊊ 𝑧 ∧ 𝑧 ⊊ 𝑦)))} |
21 | 1, 20 | wceq 1543 |
1
wff
⋖ℋ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ Cℋ
∧ 𝑦 ∈
Cℋ ) ∧ (𝑥 ⊊ 𝑦 ∧ ¬ ∃𝑧 ∈ Cℋ
(𝑥 ⊊ 𝑧 ∧ 𝑧 ⊊ 𝑦)))} |