Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvfbr Structured version   Visualization version   GIF version

Theorem lcvfbr 37890
Description: The covers relation for a left vector space (or a left module). (Contributed by NM, 7-Jan-2015.)
Hypotheses
Ref Expression
lcvfbr.s 𝑆 = (LSubSp‘𝑊)
lcvfbr.c 𝐶 = ( ⋖L𝑊)
lcvfbr.w (𝜑𝑊𝑋)
Assertion
Ref Expression
lcvfbr (𝜑𝐶 = {⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))})
Distinct variable groups:   𝑡,𝑠,𝑢,𝑆   𝑊,𝑠,𝑡,𝑢
Allowed substitution hints:   𝜑(𝑢,𝑡,𝑠)   𝐶(𝑢,𝑡,𝑠)   𝑋(𝑢,𝑡,𝑠)

Proof of Theorem lcvfbr
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lcvfbr.c . 2 𝐶 = ( ⋖L𝑊)
2 lcvfbr.w . . 3 (𝜑𝑊𝑋)
3 elex 3493 . . 3 (𝑊𝑋𝑊 ∈ V)
4 fveq2 6892 . . . . . . . . 9 (𝑤 = 𝑊 → (LSubSp‘𝑤) = (LSubSp‘𝑊))
5 lcvfbr.s . . . . . . . . 9 𝑆 = (LSubSp‘𝑊)
64, 5eqtr4di 2791 . . . . . . . 8 (𝑤 = 𝑊 → (LSubSp‘𝑤) = 𝑆)
76eleq2d 2820 . . . . . . 7 (𝑤 = 𝑊 → (𝑡 ∈ (LSubSp‘𝑤) ↔ 𝑡𝑆))
86eleq2d 2820 . . . . . . 7 (𝑤 = 𝑊 → (𝑢 ∈ (LSubSp‘𝑤) ↔ 𝑢𝑆))
97, 8anbi12d 632 . . . . . 6 (𝑤 = 𝑊 → ((𝑡 ∈ (LSubSp‘𝑤) ∧ 𝑢 ∈ (LSubSp‘𝑤)) ↔ (𝑡𝑆𝑢𝑆)))
106rexeqdv 3327 . . . . . . . 8 (𝑤 = 𝑊 → (∃𝑠 ∈ (LSubSp‘𝑤)(𝑡𝑠𝑠𝑢) ↔ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))
1110notbid 318 . . . . . . 7 (𝑤 = 𝑊 → (¬ ∃𝑠 ∈ (LSubSp‘𝑤)(𝑡𝑠𝑠𝑢) ↔ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))
1211anbi2d 630 . . . . . 6 (𝑤 = 𝑊 → ((𝑡𝑢 ∧ ¬ ∃𝑠 ∈ (LSubSp‘𝑤)(𝑡𝑠𝑠𝑢)) ↔ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢))))
139, 12anbi12d 632 . . . . 5 (𝑤 = 𝑊 → (((𝑡 ∈ (LSubSp‘𝑤) ∧ 𝑢 ∈ (LSubSp‘𝑤)) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠 ∈ (LSubSp‘𝑤)(𝑡𝑠𝑠𝑢))) ↔ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))))
1413opabbidv 5215 . . . 4 (𝑤 = 𝑊 → {⟨𝑡, 𝑢⟩ ∣ ((𝑡 ∈ (LSubSp‘𝑤) ∧ 𝑢 ∈ (LSubSp‘𝑤)) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠 ∈ (LSubSp‘𝑤)(𝑡𝑠𝑠𝑢)))} = {⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))})
15 df-lcv 37889 . . . 4 L = (𝑤 ∈ V ↦ {⟨𝑡, 𝑢⟩ ∣ ((𝑡 ∈ (LSubSp‘𝑤) ∧ 𝑢 ∈ (LSubSp‘𝑤)) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠 ∈ (LSubSp‘𝑤)(𝑡𝑠𝑠𝑢)))})
165fvexi 6906 . . . . . 6 𝑆 ∈ V
1716, 16xpex 7740 . . . . 5 (𝑆 × 𝑆) ∈ V
18 opabssxp 5769 . . . . 5 {⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))} ⊆ (𝑆 × 𝑆)
1917, 18ssexi 5323 . . . 4 {⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))} ∈ V
2014, 15, 19fvmpt 6999 . . 3 (𝑊 ∈ V → ( ⋖L𝑊) = {⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))})
212, 3, 203syl 18 . 2 (𝜑 → ( ⋖L𝑊) = {⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))})
221, 21eqtrid 2785 1 (𝜑𝐶 = {⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  wrex 3071  Vcvv 3475  wpss 3950  {copab 5211   × cxp 5675  cfv 6544  LSubSpclss 20542  L clcv 37888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-lcv 37889
This theorem is referenced by:  lcvbr  37891
  Copyright terms: Public domain W3C validator