Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvbr Structured version   Visualization version   GIF version

Theorem lcvbr 39014
Description: The covers relation for a left vector space (or a left module). (cvbr 32211 analog.) (Contributed by NM, 9-Jan-2015.)
Hypotheses
Ref Expression
lcvfbr.s 𝑆 = (LSubSp‘𝑊)
lcvfbr.c 𝐶 = ( ⋖L𝑊)
lcvfbr.w (𝜑𝑊𝑋)
lcvfbr.t (𝜑𝑇𝑆)
lcvfbr.u (𝜑𝑈𝑆)
Assertion
Ref Expression
lcvbr (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))))
Distinct variable groups:   𝑆,𝑠   𝑊,𝑠   𝑇,𝑠   𝑈,𝑠
Allowed substitution hints:   𝜑(𝑠)   𝐶(𝑠)   𝑋(𝑠)

Proof of Theorem lcvbr
Dummy variables 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcvfbr.t . . 3 (𝜑𝑇𝑆)
2 lcvfbr.u . . 3 (𝜑𝑈𝑆)
3 eleq1 2816 . . . . . 6 (𝑡 = 𝑇 → (𝑡𝑆𝑇𝑆))
43anbi1d 631 . . . . 5 (𝑡 = 𝑇 → ((𝑡𝑆𝑢𝑆) ↔ (𝑇𝑆𝑢𝑆)))
5 psseq1 4053 . . . . . 6 (𝑡 = 𝑇 → (𝑡𝑢𝑇𝑢))
6 psseq1 4053 . . . . . . . . 9 (𝑡 = 𝑇 → (𝑡𝑠𝑇𝑠))
76anbi1d 631 . . . . . . . 8 (𝑡 = 𝑇 → ((𝑡𝑠𝑠𝑢) ↔ (𝑇𝑠𝑠𝑢)))
87rexbidv 3157 . . . . . . 7 (𝑡 = 𝑇 → (∃𝑠𝑆 (𝑡𝑠𝑠𝑢) ↔ ∃𝑠𝑆 (𝑇𝑠𝑠𝑢)))
98notbid 318 . . . . . 6 (𝑡 = 𝑇 → (¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢) ↔ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑢)))
105, 9anbi12d 632 . . . . 5 (𝑡 = 𝑇 → ((𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)) ↔ (𝑇𝑢 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑢))))
114, 10anbi12d 632 . . . 4 (𝑡 = 𝑇 → (((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢))) ↔ ((𝑇𝑆𝑢𝑆) ∧ (𝑇𝑢 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑢)))))
12 eleq1 2816 . . . . . 6 (𝑢 = 𝑈 → (𝑢𝑆𝑈𝑆))
1312anbi2d 630 . . . . 5 (𝑢 = 𝑈 → ((𝑇𝑆𝑢𝑆) ↔ (𝑇𝑆𝑈𝑆)))
14 psseq2 4054 . . . . . 6 (𝑢 = 𝑈 → (𝑇𝑢𝑇𝑈))
15 psseq2 4054 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑠𝑢𝑠𝑈))
1615anbi2d 630 . . . . . . . 8 (𝑢 = 𝑈 → ((𝑇𝑠𝑠𝑢) ↔ (𝑇𝑠𝑠𝑈)))
1716rexbidv 3157 . . . . . . 7 (𝑢 = 𝑈 → (∃𝑠𝑆 (𝑇𝑠𝑠𝑢) ↔ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))
1817notbid 318 . . . . . 6 (𝑢 = 𝑈 → (¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑢) ↔ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))
1914, 18anbi12d 632 . . . . 5 (𝑢 = 𝑈 → ((𝑇𝑢 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑢)) ↔ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))))
2013, 19anbi12d 632 . . . 4 (𝑢 = 𝑈 → (((𝑇𝑆𝑢𝑆) ∧ (𝑇𝑢 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑢))) ↔ ((𝑇𝑆𝑈𝑆) ∧ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))))
21 eqid 2729 . . . 4 {⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))} = {⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))}
2211, 20, 21brabg 5499 . . 3 ((𝑇𝑆𝑈𝑆) → (𝑇{⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))}𝑈 ↔ ((𝑇𝑆𝑈𝑆) ∧ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))))
231, 2, 22syl2anc 584 . 2 (𝜑 → (𝑇{⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))}𝑈 ↔ ((𝑇𝑆𝑈𝑆) ∧ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))))
24 lcvfbr.s . . . 4 𝑆 = (LSubSp‘𝑊)
25 lcvfbr.c . . . 4 𝐶 = ( ⋖L𝑊)
26 lcvfbr.w . . . 4 (𝜑𝑊𝑋)
2724, 25, 26lcvfbr 39013 . . 3 (𝜑𝐶 = {⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))})
2827breqd 5118 . 2 (𝜑 → (𝑇𝐶𝑈𝑇{⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))}𝑈))
291, 2jca 511 . . 3 (𝜑 → (𝑇𝑆𝑈𝑆))
3029biantrurd 532 . 2 (𝜑 → ((𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)) ↔ ((𝑇𝑆𝑈𝑆) ∧ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))))
3123, 28, 303bitr4d 311 1 (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  wpss 3915   class class class wbr 5107  {copab 5169  cfv 6511  LSubSpclss 20837  L clcv 39011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-lcv 39012
This theorem is referenced by:  lcvbr2  39015  lcvbr3  39016  lcvpss  39017  lcvnbtwn  39018  lsatcv0  39024  mapdcv  41654
  Copyright terms: Public domain W3C validator