Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvbr Structured version   Visualization version   GIF version

Theorem lcvbr 37483
Description: The covers relation for a left vector space (or a left module). (cvbr 31224 analog.) (Contributed by NM, 9-Jan-2015.)
Hypotheses
Ref Expression
lcvfbr.s 𝑆 = (LSubSp‘𝑊)
lcvfbr.c 𝐶 = ( ⋖L𝑊)
lcvfbr.w (𝜑𝑊𝑋)
lcvfbr.t (𝜑𝑇𝑆)
lcvfbr.u (𝜑𝑈𝑆)
Assertion
Ref Expression
lcvbr (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))))
Distinct variable groups:   𝑆,𝑠   𝑊,𝑠   𝑇,𝑠   𝑈,𝑠
Allowed substitution hints:   𝜑(𝑠)   𝐶(𝑠)   𝑋(𝑠)

Proof of Theorem lcvbr
Dummy variables 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcvfbr.t . . 3 (𝜑𝑇𝑆)
2 lcvfbr.u . . 3 (𝜑𝑈𝑆)
3 eleq1 2825 . . . . . 6 (𝑡 = 𝑇 → (𝑡𝑆𝑇𝑆))
43anbi1d 630 . . . . 5 (𝑡 = 𝑇 → ((𝑡𝑆𝑢𝑆) ↔ (𝑇𝑆𝑢𝑆)))
5 psseq1 4047 . . . . . 6 (𝑡 = 𝑇 → (𝑡𝑢𝑇𝑢))
6 psseq1 4047 . . . . . . . . 9 (𝑡 = 𝑇 → (𝑡𝑠𝑇𝑠))
76anbi1d 630 . . . . . . . 8 (𝑡 = 𝑇 → ((𝑡𝑠𝑠𝑢) ↔ (𝑇𝑠𝑠𝑢)))
87rexbidv 3175 . . . . . . 7 (𝑡 = 𝑇 → (∃𝑠𝑆 (𝑡𝑠𝑠𝑢) ↔ ∃𝑠𝑆 (𝑇𝑠𝑠𝑢)))
98notbid 317 . . . . . 6 (𝑡 = 𝑇 → (¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢) ↔ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑢)))
105, 9anbi12d 631 . . . . 5 (𝑡 = 𝑇 → ((𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)) ↔ (𝑇𝑢 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑢))))
114, 10anbi12d 631 . . . 4 (𝑡 = 𝑇 → (((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢))) ↔ ((𝑇𝑆𝑢𝑆) ∧ (𝑇𝑢 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑢)))))
12 eleq1 2825 . . . . . 6 (𝑢 = 𝑈 → (𝑢𝑆𝑈𝑆))
1312anbi2d 629 . . . . 5 (𝑢 = 𝑈 → ((𝑇𝑆𝑢𝑆) ↔ (𝑇𝑆𝑈𝑆)))
14 psseq2 4048 . . . . . 6 (𝑢 = 𝑈 → (𝑇𝑢𝑇𝑈))
15 psseq2 4048 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑠𝑢𝑠𝑈))
1615anbi2d 629 . . . . . . . 8 (𝑢 = 𝑈 → ((𝑇𝑠𝑠𝑢) ↔ (𝑇𝑠𝑠𝑈)))
1716rexbidv 3175 . . . . . . 7 (𝑢 = 𝑈 → (∃𝑠𝑆 (𝑇𝑠𝑠𝑢) ↔ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))
1817notbid 317 . . . . . 6 (𝑢 = 𝑈 → (¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑢) ↔ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))
1914, 18anbi12d 631 . . . . 5 (𝑢 = 𝑈 → ((𝑇𝑢 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑢)) ↔ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))))
2013, 19anbi12d 631 . . . 4 (𝑢 = 𝑈 → (((𝑇𝑆𝑢𝑆) ∧ (𝑇𝑢 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑢))) ↔ ((𝑇𝑆𝑈𝑆) ∧ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))))
21 eqid 2736 . . . 4 {⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))} = {⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))}
2211, 20, 21brabg 5496 . . 3 ((𝑇𝑆𝑈𝑆) → (𝑇{⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))}𝑈 ↔ ((𝑇𝑆𝑈𝑆) ∧ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))))
231, 2, 22syl2anc 584 . 2 (𝜑 → (𝑇{⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))}𝑈 ↔ ((𝑇𝑆𝑈𝑆) ∧ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))))
24 lcvfbr.s . . . 4 𝑆 = (LSubSp‘𝑊)
25 lcvfbr.c . . . 4 𝐶 = ( ⋖L𝑊)
26 lcvfbr.w . . . 4 (𝜑𝑊𝑋)
2724, 25, 26lcvfbr 37482 . . 3 (𝜑𝐶 = {⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))})
2827breqd 5116 . 2 (𝜑 → (𝑇𝐶𝑈𝑇{⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))}𝑈))
291, 2jca 512 . . 3 (𝜑 → (𝑇𝑆𝑈𝑆))
3029biantrurd 533 . 2 (𝜑 → ((𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)) ↔ ((𝑇𝑆𝑈𝑆) ∧ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))))
3123, 28, 303bitr4d 310 1 (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wrex 3073  wpss 3911   class class class wbr 5105  {copab 5167  cfv 6496  LSubSpclss 20392  L clcv 37480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-iota 6448  df-fun 6498  df-fv 6504  df-lcv 37481
This theorem is referenced by:  lcvbr2  37484  lcvbr3  37485  lcvpss  37486  lcvnbtwn  37487  lsatcv0  37493  mapdcv  40123
  Copyright terms: Public domain W3C validator