Step | Hyp | Ref
| Expression |
1 | | lcvfbr.t |
. . 3
⊢ (𝜑 → 𝑇 ∈ 𝑆) |
2 | | lcvfbr.u |
. . 3
⊢ (𝜑 → 𝑈 ∈ 𝑆) |
3 | | eleq1 2826 |
. . . . . 6
⊢ (𝑡 = 𝑇 → (𝑡 ∈ 𝑆 ↔ 𝑇 ∈ 𝑆)) |
4 | 3 | anbi1d 630 |
. . . . 5
⊢ (𝑡 = 𝑇 → ((𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆) ↔ (𝑇 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆))) |
5 | | psseq1 4022 |
. . . . . 6
⊢ (𝑡 = 𝑇 → (𝑡 ⊊ 𝑢 ↔ 𝑇 ⊊ 𝑢)) |
6 | | psseq1 4022 |
. . . . . . . . 9
⊢ (𝑡 = 𝑇 → (𝑡 ⊊ 𝑠 ↔ 𝑇 ⊊ 𝑠)) |
7 | 6 | anbi1d 630 |
. . . . . . . 8
⊢ (𝑡 = 𝑇 → ((𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢) ↔ (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢))) |
8 | 7 | rexbidv 3226 |
. . . . . . 7
⊢ (𝑡 = 𝑇 → (∃𝑠 ∈ 𝑆 (𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢) ↔ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢))) |
9 | 8 | notbid 318 |
. . . . . 6
⊢ (𝑡 = 𝑇 → (¬ ∃𝑠 ∈ 𝑆 (𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢) ↔ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢))) |
10 | 5, 9 | anbi12d 631 |
. . . . 5
⊢ (𝑡 = 𝑇 → ((𝑡 ⊊ 𝑢 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢)) ↔ (𝑇 ⊊ 𝑢 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢)))) |
11 | 4, 10 | anbi12d 631 |
. . . 4
⊢ (𝑡 = 𝑇 → (((𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆) ∧ (𝑡 ⊊ 𝑢 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢))) ↔ ((𝑇 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆) ∧ (𝑇 ⊊ 𝑢 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢))))) |
12 | | eleq1 2826 |
. . . . . 6
⊢ (𝑢 = 𝑈 → (𝑢 ∈ 𝑆 ↔ 𝑈 ∈ 𝑆)) |
13 | 12 | anbi2d 629 |
. . . . 5
⊢ (𝑢 = 𝑈 → ((𝑇 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆) ↔ (𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆))) |
14 | | psseq2 4023 |
. . . . . 6
⊢ (𝑢 = 𝑈 → (𝑇 ⊊ 𝑢 ↔ 𝑇 ⊊ 𝑈)) |
15 | | psseq2 4023 |
. . . . . . . . 9
⊢ (𝑢 = 𝑈 → (𝑠 ⊊ 𝑢 ↔ 𝑠 ⊊ 𝑈)) |
16 | 15 | anbi2d 629 |
. . . . . . . 8
⊢ (𝑢 = 𝑈 → ((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢) ↔ (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈))) |
17 | 16 | rexbidv 3226 |
. . . . . . 7
⊢ (𝑢 = 𝑈 → (∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢) ↔ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈))) |
18 | 17 | notbid 318 |
. . . . . 6
⊢ (𝑢 = 𝑈 → (¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢) ↔ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈))) |
19 | 14, 18 | anbi12d 631 |
. . . . 5
⊢ (𝑢 = 𝑈 → ((𝑇 ⊊ 𝑢 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢)) ↔ (𝑇 ⊊ 𝑈 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈)))) |
20 | 13, 19 | anbi12d 631 |
. . . 4
⊢ (𝑢 = 𝑈 → (((𝑇 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆) ∧ (𝑇 ⊊ 𝑢 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢))) ↔ ((𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) ∧ (𝑇 ⊊ 𝑈 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈))))) |
21 | | eqid 2738 |
. . . 4
⊢
{〈𝑡, 𝑢〉 ∣ ((𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆) ∧ (𝑡 ⊊ 𝑢 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢)))} = {〈𝑡, 𝑢〉 ∣ ((𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆) ∧ (𝑡 ⊊ 𝑢 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢)))} |
22 | 11, 20, 21 | brabg 5452 |
. . 3
⊢ ((𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇{〈𝑡, 𝑢〉 ∣ ((𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆) ∧ (𝑡 ⊊ 𝑢 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢)))}𝑈 ↔ ((𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) ∧ (𝑇 ⊊ 𝑈 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈))))) |
23 | 1, 2, 22 | syl2anc 584 |
. 2
⊢ (𝜑 → (𝑇{〈𝑡, 𝑢〉 ∣ ((𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆) ∧ (𝑡 ⊊ 𝑢 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢)))}𝑈 ↔ ((𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) ∧ (𝑇 ⊊ 𝑈 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈))))) |
24 | | lcvfbr.s |
. . . 4
⊢ 𝑆 = (LSubSp‘𝑊) |
25 | | lcvfbr.c |
. . . 4
⊢ 𝐶 = ( ⋖L
‘𝑊) |
26 | | lcvfbr.w |
. . . 4
⊢ (𝜑 → 𝑊 ∈ 𝑋) |
27 | 24, 25, 26 | lcvfbr 37034 |
. . 3
⊢ (𝜑 → 𝐶 = {〈𝑡, 𝑢〉 ∣ ((𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆) ∧ (𝑡 ⊊ 𝑢 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢)))}) |
28 | 27 | breqd 5085 |
. 2
⊢ (𝜑 → (𝑇𝐶𝑈 ↔ 𝑇{〈𝑡, 𝑢〉 ∣ ((𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆) ∧ (𝑡 ⊊ 𝑢 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢)))}𝑈)) |
29 | 1, 2 | jca 512 |
. . 3
⊢ (𝜑 → (𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆)) |
30 | 29 | biantrurd 533 |
. 2
⊢ (𝜑 → ((𝑇 ⊊ 𝑈 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈)) ↔ ((𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) ∧ (𝑇 ⊊ 𝑈 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈))))) |
31 | 23, 28, 30 | 3bitr4d 311 |
1
⊢ (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇 ⊊ 𝑈 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈)))) |