Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvbr Structured version   Visualization version   GIF version

Theorem lcvbr 37281
Description: The covers relation for a left vector space (or a left module). (cvbr 30845 analog.) (Contributed by NM, 9-Jan-2015.)
Hypotheses
Ref Expression
lcvfbr.s 𝑆 = (LSubSp‘𝑊)
lcvfbr.c 𝐶 = ( ⋖L𝑊)
lcvfbr.w (𝜑𝑊𝑋)
lcvfbr.t (𝜑𝑇𝑆)
lcvfbr.u (𝜑𝑈𝑆)
Assertion
Ref Expression
lcvbr (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))))
Distinct variable groups:   𝑆,𝑠   𝑊,𝑠   𝑇,𝑠   𝑈,𝑠
Allowed substitution hints:   𝜑(𝑠)   𝐶(𝑠)   𝑋(𝑠)

Proof of Theorem lcvbr
Dummy variables 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcvfbr.t . . 3 (𝜑𝑇𝑆)
2 lcvfbr.u . . 3 (𝜑𝑈𝑆)
3 eleq1 2824 . . . . . 6 (𝑡 = 𝑇 → (𝑡𝑆𝑇𝑆))
43anbi1d 630 . . . . 5 (𝑡 = 𝑇 → ((𝑡𝑆𝑢𝑆) ↔ (𝑇𝑆𝑢𝑆)))
5 psseq1 4033 . . . . . 6 (𝑡 = 𝑇 → (𝑡𝑢𝑇𝑢))
6 psseq1 4033 . . . . . . . . 9 (𝑡 = 𝑇 → (𝑡𝑠𝑇𝑠))
76anbi1d 630 . . . . . . . 8 (𝑡 = 𝑇 → ((𝑡𝑠𝑠𝑢) ↔ (𝑇𝑠𝑠𝑢)))
87rexbidv 3171 . . . . . . 7 (𝑡 = 𝑇 → (∃𝑠𝑆 (𝑡𝑠𝑠𝑢) ↔ ∃𝑠𝑆 (𝑇𝑠𝑠𝑢)))
98notbid 317 . . . . . 6 (𝑡 = 𝑇 → (¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢) ↔ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑢)))
105, 9anbi12d 631 . . . . 5 (𝑡 = 𝑇 → ((𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)) ↔ (𝑇𝑢 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑢))))
114, 10anbi12d 631 . . . 4 (𝑡 = 𝑇 → (((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢))) ↔ ((𝑇𝑆𝑢𝑆) ∧ (𝑇𝑢 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑢)))))
12 eleq1 2824 . . . . . 6 (𝑢 = 𝑈 → (𝑢𝑆𝑈𝑆))
1312anbi2d 629 . . . . 5 (𝑢 = 𝑈 → ((𝑇𝑆𝑢𝑆) ↔ (𝑇𝑆𝑈𝑆)))
14 psseq2 4034 . . . . . 6 (𝑢 = 𝑈 → (𝑇𝑢𝑇𝑈))
15 psseq2 4034 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑠𝑢𝑠𝑈))
1615anbi2d 629 . . . . . . . 8 (𝑢 = 𝑈 → ((𝑇𝑠𝑠𝑢) ↔ (𝑇𝑠𝑠𝑈)))
1716rexbidv 3171 . . . . . . 7 (𝑢 = 𝑈 → (∃𝑠𝑆 (𝑇𝑠𝑠𝑢) ↔ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))
1817notbid 317 . . . . . 6 (𝑢 = 𝑈 → (¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑢) ↔ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))
1914, 18anbi12d 631 . . . . 5 (𝑢 = 𝑈 → ((𝑇𝑢 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑢)) ↔ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))))
2013, 19anbi12d 631 . . . 4 (𝑢 = 𝑈 → (((𝑇𝑆𝑢𝑆) ∧ (𝑇𝑢 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑢))) ↔ ((𝑇𝑆𝑈𝑆) ∧ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))))
21 eqid 2736 . . . 4 {⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))} = {⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))}
2211, 20, 21brabg 5477 . . 3 ((𝑇𝑆𝑈𝑆) → (𝑇{⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))}𝑈 ↔ ((𝑇𝑆𝑈𝑆) ∧ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))))
231, 2, 22syl2anc 584 . 2 (𝜑 → (𝑇{⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))}𝑈 ↔ ((𝑇𝑆𝑈𝑆) ∧ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))))
24 lcvfbr.s . . . 4 𝑆 = (LSubSp‘𝑊)
25 lcvfbr.c . . . 4 𝐶 = ( ⋖L𝑊)
26 lcvfbr.w . . . 4 (𝜑𝑊𝑋)
2724, 25, 26lcvfbr 37280 . . 3 (𝜑𝐶 = {⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))})
2827breqd 5100 . 2 (𝜑 → (𝑇𝐶𝑈𝑇{⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))}𝑈))
291, 2jca 512 . . 3 (𝜑 → (𝑇𝑆𝑈𝑆))
3029biantrurd 533 . 2 (𝜑 → ((𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)) ↔ ((𝑇𝑆𝑈𝑆) ∧ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))))
3123, 28, 303bitr4d 310 1 (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wrex 3070  wpss 3898   class class class wbr 5089  {copab 5151  cfv 6473  LSubSpclss 20291  L clcv 37278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-br 5090  df-opab 5152  df-mpt 5173  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6425  df-fun 6475  df-fv 6481  df-lcv 37279
This theorem is referenced by:  lcvbr2  37282  lcvbr3  37283  lcvpss  37284  lcvnbtwn  37285  lsatcv0  37291  mapdcv  39921
  Copyright terms: Public domain W3C validator