Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iprodgam Structured version   Visualization version   GIF version

Theorem iprodgam 35722
Description: An infinite product version of Euler's gamma function. (Contributed by Scott Fenton, 12-Feb-2018.)
Hypothesis
Ref Expression
iprodgam.1 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
Assertion
Ref Expression
iprodgam (𝜑 → (Γ‘𝐴) = (∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))) / 𝐴))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘

Proof of Theorem iprodgam
Dummy variables 𝑗 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iprodgam.1 . . 3 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
2 eflgam 26988 . . 3 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (exp‘(log Γ‘𝐴)) = (Γ‘𝐴))
31, 2syl 17 . 2 (𝜑 → (exp‘(log Γ‘𝐴)) = (Γ‘𝐴))
4 oveq1 7376 . . . . . . . . 9 (𝑧 = 𝐴 → (𝑧 · (log‘((𝑘 + 1) / 𝑘))) = (𝐴 · (log‘((𝑘 + 1) / 𝑘))))
5 oveq1 7376 . . . . . . . . . 10 (𝑧 = 𝐴 → (𝑧 / 𝑘) = (𝐴 / 𝑘))
65fvoveq1d 7391 . . . . . . . . 9 (𝑧 = 𝐴 → (log‘((𝑧 / 𝑘) + 1)) = (log‘((𝐴 / 𝑘) + 1)))
74, 6oveq12d 7387 . . . . . . . 8 (𝑧 = 𝐴 → ((𝑧 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝑧 / 𝑘) + 1))) = ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))))
87sumeq2sdv 15645 . . . . . . 7 (𝑧 = 𝐴 → Σ𝑘 ∈ ℕ ((𝑧 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝑧 / 𝑘) + 1))) = Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))))
9 fveq2 6840 . . . . . . 7 (𝑧 = 𝐴 → (log‘𝑧) = (log‘𝐴))
108, 9oveq12d 7387 . . . . . 6 (𝑧 = 𝐴 → (Σ𝑘 ∈ ℕ ((𝑧 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝑧 / 𝑘) + 1))) − (log‘𝑧)) = (Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) − (log‘𝐴)))
11 df-lgam 26962 . . . . . 6 log Γ = (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑘 ∈ ℕ ((𝑧 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝑧 / 𝑘) + 1))) − (log‘𝑧)))
12 ovex 7402 . . . . . 6 𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) − (log‘𝐴)) ∈ V
1310, 11, 12fvmpt 6950 . . . . 5 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (log Γ‘𝐴) = (Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) − (log‘𝐴)))
141, 13syl 17 . . . 4 (𝜑 → (log Γ‘𝐴) = (Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) − (log‘𝐴)))
1514fveq2d 6844 . . 3 (𝜑 → (exp‘(log Γ‘𝐴)) = (exp‘(Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) − (log‘𝐴))))
16 nnuz 12812 . . . . . 6 ℕ = (ℤ‘1)
17 1zzd 12540 . . . . . 6 (𝜑 → 1 ∈ ℤ)
18 oveq1 7376 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝑗 + 1) = (𝑘 + 1))
19 id 22 . . . . . . . . . . . 12 (𝑗 = 𝑘𝑗 = 𝑘)
2018, 19oveq12d 7387 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝑗 + 1) / 𝑗) = ((𝑘 + 1) / 𝑘))
2120fveq2d 6844 . . . . . . . . . 10 (𝑗 = 𝑘 → (log‘((𝑗 + 1) / 𝑗)) = (log‘((𝑘 + 1) / 𝑘)))
2221oveq2d 7385 . . . . . . . . 9 (𝑗 = 𝑘 → (𝐴 · (log‘((𝑗 + 1) / 𝑗))) = (𝐴 · (log‘((𝑘 + 1) / 𝑘))))
23 oveq2 7377 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝐴 / 𝑗) = (𝐴 / 𝑘))
2423fvoveq1d 7391 . . . . . . . . 9 (𝑗 = 𝑘 → (log‘((𝐴 / 𝑗) + 1)) = (log‘((𝐴 / 𝑘) + 1)))
2522, 24oveq12d 7387 . . . . . . . 8 (𝑗 = 𝑘 → ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))) = ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))))
26 eqid 2729 . . . . . . . 8 (𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1)))) = (𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))))
27 ovex 7402 . . . . . . . 8 ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) ∈ V
2825, 26, 27fvmpt 6950 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))))‘𝑘) = ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))))
2928adantl 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))))‘𝑘) = ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))))
301eldifad 3923 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
3130adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
32 peano2nn 12174 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
3332adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
3433nncnd 12178 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℂ)
35 nncn 12170 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
3635adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
37 nnne0 12196 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
3837adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝑘 ≠ 0)
3934, 36, 38divcld 11934 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) / 𝑘) ∈ ℂ)
4033nnne0d 12212 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ≠ 0)
4134, 36, 40, 38divne0d 11950 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) / 𝑘) ≠ 0)
4239, 41logcld 26512 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (log‘((𝑘 + 1) / 𝑘)) ∈ ℂ)
4331, 42mulcld 11170 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐴 · (log‘((𝑘 + 1) / 𝑘))) ∈ ℂ)
4431, 36, 38divcld 11934 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐴 / 𝑘) ∈ ℂ)
45 1cnd 11145 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 1 ∈ ℂ)
4644, 45addcld 11169 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((𝐴 / 𝑘) + 1) ∈ ℂ)
471adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
48 simpr 484 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
4947, 48dmgmdivn0 26971 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((𝐴 / 𝑘) + 1) ≠ 0)
5046, 49logcld 26512 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (log‘((𝐴 / 𝑘) + 1)) ∈ ℂ)
5143, 50subcld 11509 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) ∈ ℂ)
5226, 1lgamcvg 26997 . . . . . . 7 (𝜑 → seq1( + , (𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))))) ⇝ ((log Γ‘𝐴) + (log‘𝐴)))
53 seqex 13944 . . . . . . . 8 seq1( + , (𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))))) ∈ V
54 ovex 7402 . . . . . . . 8 ((log Γ‘𝐴) + (log‘𝐴)) ∈ V
5553, 54breldm 5862 . . . . . . 7 (seq1( + , (𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))))) ⇝ ((log Γ‘𝐴) + (log‘𝐴)) → seq1( + , (𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))))) ∈ dom ⇝ )
5652, 55syl 17 . . . . . 6 (𝜑 → seq1( + , (𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))))) ∈ dom ⇝ )
5716, 17, 29, 51, 56isumcl 15703 . . . . 5 (𝜑 → Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) ∈ ℂ)
581dmgmn0 26969 . . . . . 6 (𝜑𝐴 ≠ 0)
5930, 58logcld 26512 . . . . 5 (𝜑 → (log‘𝐴) ∈ ℂ)
60 efsub 16044 . . . . 5 ((Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) ∈ ℂ ∧ (log‘𝐴) ∈ ℂ) → (exp‘(Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) − (log‘𝐴))) = ((exp‘Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) / (exp‘(log‘𝐴))))
6157, 59, 60syl2anc 584 . . . 4 (𝜑 → (exp‘(Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) − (log‘𝐴))) = ((exp‘Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) / (exp‘(log‘𝐴))))
6216, 17, 29, 51, 56iprodefisum 35721 . . . . . 6 (𝜑 → ∏𝑘 ∈ ℕ (exp‘((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) = (exp‘Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))))
63 efsub 16044 . . . . . . . . 9 (((𝐴 · (log‘((𝑘 + 1) / 𝑘))) ∈ ℂ ∧ (log‘((𝐴 / 𝑘) + 1)) ∈ ℂ) → (exp‘((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) = ((exp‘(𝐴 · (log‘((𝑘 + 1) / 𝑘)))) / (exp‘(log‘((𝐴 / 𝑘) + 1)))))
6443, 50, 63syl2anc 584 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (exp‘((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) = ((exp‘(𝐴 · (log‘((𝑘 + 1) / 𝑘)))) / (exp‘(log‘((𝐴 / 𝑘) + 1)))))
6536, 45, 36, 38divdird 11972 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) / 𝑘) = ((𝑘 / 𝑘) + (1 / 𝑘)))
6636, 38dividd 11932 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (𝑘 / 𝑘) = 1)
6766oveq1d 7384 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → ((𝑘 / 𝑘) + (1 / 𝑘)) = (1 + (1 / 𝑘)))
6865, 67eqtrd 2764 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) / 𝑘) = (1 + (1 / 𝑘)))
6968fveq2d 6844 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (log‘((𝑘 + 1) / 𝑘)) = (log‘(1 + (1 / 𝑘))))
7069oveq2d 7385 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐴 · (log‘((𝑘 + 1) / 𝑘))) = (𝐴 · (log‘(1 + (1 / 𝑘)))))
7170fveq2d 6844 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (exp‘(𝐴 · (log‘((𝑘 + 1) / 𝑘)))) = (exp‘(𝐴 · (log‘(1 + (1 / 𝑘))))))
72 1rp 12931 . . . . . . . . . . . . . 14 1 ∈ ℝ+
7372a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 1 ∈ ℝ+)
7448nnrpd 12969 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℝ+)
7574rpreccld 12981 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ+)
7673, 75rpaddcld 12986 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (1 + (1 / 𝑘)) ∈ ℝ+)
7776rpcnd 12973 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (1 + (1 / 𝑘)) ∈ ℂ)
7876rpne0d 12976 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (1 + (1 / 𝑘)) ≠ 0)
7977, 78, 31cxpefd 26654 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((1 + (1 / 𝑘))↑𝑐𝐴) = (exp‘(𝐴 · (log‘(1 + (1 / 𝑘))))))
8071, 79eqtr4d 2767 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (exp‘(𝐴 · (log‘((𝑘 + 1) / 𝑘)))) = ((1 + (1 / 𝑘))↑𝑐𝐴))
81 eflog 26518 . . . . . . . . . . 11 ((((𝐴 / 𝑘) + 1) ∈ ℂ ∧ ((𝐴 / 𝑘) + 1) ≠ 0) → (exp‘(log‘((𝐴 / 𝑘) + 1))) = ((𝐴 / 𝑘) + 1))
8246, 49, 81syl2anc 584 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (exp‘(log‘((𝐴 / 𝑘) + 1))) = ((𝐴 / 𝑘) + 1))
8344, 45addcomd 11352 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((𝐴 / 𝑘) + 1) = (1 + (𝐴 / 𝑘)))
8482, 83eqtrd 2764 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (exp‘(log‘((𝐴 / 𝑘) + 1))) = (1 + (𝐴 / 𝑘)))
8580, 84oveq12d 7387 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((exp‘(𝐴 · (log‘((𝑘 + 1) / 𝑘)))) / (exp‘(log‘((𝐴 / 𝑘) + 1)))) = (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))))
8664, 85eqtrd 2764 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (exp‘((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) = (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))))
8786prodeq2dv 15864 . . . . . 6 (𝜑 → ∏𝑘 ∈ ℕ (exp‘((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) = ∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))))
8862, 87eqtr3d 2766 . . . . 5 (𝜑 → (exp‘Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) = ∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))))
89 eflog 26518 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
9030, 58, 89syl2anc 584 . . . . 5 (𝜑 → (exp‘(log‘𝐴)) = 𝐴)
9188, 90oveq12d 7387 . . . 4 (𝜑 → ((exp‘Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) / (exp‘(log‘𝐴))) = (∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))) / 𝐴))
9261, 91eqtrd 2764 . . 3 (𝜑 → (exp‘(Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) − (log‘𝐴))) = (∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))) / 𝐴))
9315, 92eqtrd 2764 . 2 (𝜑 → (exp‘(log Γ‘𝐴)) = (∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))) / 𝐴))
943, 93eqtr3d 2766 1 (𝜑 → (Γ‘𝐴) = (∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))) / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3908   class class class wbr 5102  cmpt 5183  dom cdm 5631  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  cmin 11381   / cdiv 11811  cn 12162  cz 12505  +crp 12927  seqcseq 13942  cli 15426  Σcsu 15628  cprod 15845  expce 16003  logclog 26496  𝑐ccxp 26497  log Γclgam 26959  Γcgam 26960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-prod 15846  df-ef 16009  df-sin 16011  df-cos 16012  df-tan 16013  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-mulg 18982  df-cntz 19231  df-cmn 19696  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lp 23056  df-perf 23057  df-cn 23147  df-cnp 23148  df-haus 23235  df-cmp 23307  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24241  df-ms 24242  df-tms 24243  df-cncf 24804  df-limc 25800  df-dv 25801  df-ulm 26319  df-log 26498  df-cxp 26499  df-lgam 26962  df-gam 26963
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator