Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iprodgam Structured version   Visualization version   GIF version

Theorem iprodgam 34063
Description: An infinite product version of Euler's gamma function. (Contributed by Scott Fenton, 12-Feb-2018.)
Hypothesis
Ref Expression
iprodgam.1 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
Assertion
Ref Expression
iprodgam (𝜑 → (Γ‘𝐴) = (∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))) / 𝐴))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘

Proof of Theorem iprodgam
Dummy variables 𝑗 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iprodgam.1 . . 3 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
2 eflgam 26304 . . 3 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (exp‘(log Γ‘𝐴)) = (Γ‘𝐴))
31, 2syl 17 . 2 (𝜑 → (exp‘(log Γ‘𝐴)) = (Γ‘𝐴))
4 oveq1 7353 . . . . . . . . 9 (𝑧 = 𝐴 → (𝑧 · (log‘((𝑘 + 1) / 𝑘))) = (𝐴 · (log‘((𝑘 + 1) / 𝑘))))
5 oveq1 7353 . . . . . . . . . 10 (𝑧 = 𝐴 → (𝑧 / 𝑘) = (𝐴 / 𝑘))
65fvoveq1d 7368 . . . . . . . . 9 (𝑧 = 𝐴 → (log‘((𝑧 / 𝑘) + 1)) = (log‘((𝐴 / 𝑘) + 1)))
74, 6oveq12d 7364 . . . . . . . 8 (𝑧 = 𝐴 → ((𝑧 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝑧 / 𝑘) + 1))) = ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))))
87sumeq2sdv 15520 . . . . . . 7 (𝑧 = 𝐴 → Σ𝑘 ∈ ℕ ((𝑧 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝑧 / 𝑘) + 1))) = Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))))
9 fveq2 6834 . . . . . . 7 (𝑧 = 𝐴 → (log‘𝑧) = (log‘𝐴))
108, 9oveq12d 7364 . . . . . 6 (𝑧 = 𝐴 → (Σ𝑘 ∈ ℕ ((𝑧 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝑧 / 𝑘) + 1))) − (log‘𝑧)) = (Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) − (log‘𝐴)))
11 df-lgam 26278 . . . . . 6 log Γ = (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑘 ∈ ℕ ((𝑧 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝑧 / 𝑘) + 1))) − (log‘𝑧)))
12 ovex 7379 . . . . . 6 𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) − (log‘𝐴)) ∈ V
1310, 11, 12fvmpt 6940 . . . . 5 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (log Γ‘𝐴) = (Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) − (log‘𝐴)))
141, 13syl 17 . . . 4 (𝜑 → (log Γ‘𝐴) = (Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) − (log‘𝐴)))
1514fveq2d 6838 . . 3 (𝜑 → (exp‘(log Γ‘𝐴)) = (exp‘(Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) − (log‘𝐴))))
16 nnuz 12731 . . . . . 6 ℕ = (ℤ‘1)
17 1zzd 12461 . . . . . 6 (𝜑 → 1 ∈ ℤ)
18 oveq1 7353 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝑗 + 1) = (𝑘 + 1))
19 id 22 . . . . . . . . . . . 12 (𝑗 = 𝑘𝑗 = 𝑘)
2018, 19oveq12d 7364 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝑗 + 1) / 𝑗) = ((𝑘 + 1) / 𝑘))
2120fveq2d 6838 . . . . . . . . . 10 (𝑗 = 𝑘 → (log‘((𝑗 + 1) / 𝑗)) = (log‘((𝑘 + 1) / 𝑘)))
2221oveq2d 7362 . . . . . . . . 9 (𝑗 = 𝑘 → (𝐴 · (log‘((𝑗 + 1) / 𝑗))) = (𝐴 · (log‘((𝑘 + 1) / 𝑘))))
23 oveq2 7354 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝐴 / 𝑗) = (𝐴 / 𝑘))
2423fvoveq1d 7368 . . . . . . . . 9 (𝑗 = 𝑘 → (log‘((𝐴 / 𝑗) + 1)) = (log‘((𝐴 / 𝑘) + 1)))
2522, 24oveq12d 7364 . . . . . . . 8 (𝑗 = 𝑘 → ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))) = ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))))
26 eqid 2737 . . . . . . . 8 (𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1)))) = (𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))))
27 ovex 7379 . . . . . . . 8 ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) ∈ V
2825, 26, 27fvmpt 6940 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))))‘𝑘) = ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))))
2928adantl 483 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))))‘𝑘) = ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))))
301eldifad 3917 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
3130adantr 482 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
32 peano2nn 12095 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
3332adantl 483 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
3433nncnd 12099 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℂ)
35 nncn 12091 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
3635adantl 483 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
37 nnne0 12117 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
3837adantl 483 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝑘 ≠ 0)
3934, 36, 38divcld 11861 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) / 𝑘) ∈ ℂ)
4033nnne0d 12133 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ≠ 0)
4134, 36, 40, 38divne0d 11877 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) / 𝑘) ≠ 0)
4239, 41logcld 25836 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (log‘((𝑘 + 1) / 𝑘)) ∈ ℂ)
4331, 42mulcld 11105 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐴 · (log‘((𝑘 + 1) / 𝑘))) ∈ ℂ)
4431, 36, 38divcld 11861 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐴 / 𝑘) ∈ ℂ)
45 1cnd 11080 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 1 ∈ ℂ)
4644, 45addcld 11104 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((𝐴 / 𝑘) + 1) ∈ ℂ)
471adantr 482 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
48 simpr 486 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
4947, 48dmgmdivn0 26287 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((𝐴 / 𝑘) + 1) ≠ 0)
5046, 49logcld 25836 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (log‘((𝐴 / 𝑘) + 1)) ∈ ℂ)
5143, 50subcld 11442 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) ∈ ℂ)
5226, 1lgamcvg 26313 . . . . . . 7 (𝜑 → seq1( + , (𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))))) ⇝ ((log Γ‘𝐴) + (log‘𝐴)))
53 seqex 13833 . . . . . . . 8 seq1( + , (𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))))) ∈ V
54 ovex 7379 . . . . . . . 8 ((log Γ‘𝐴) + (log‘𝐴)) ∈ V
5553, 54breldm 5857 . . . . . . 7 (seq1( + , (𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))))) ⇝ ((log Γ‘𝐴) + (log‘𝐴)) → seq1( + , (𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))))) ∈ dom ⇝ )
5652, 55syl 17 . . . . . 6 (𝜑 → seq1( + , (𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))))) ∈ dom ⇝ )
5716, 17, 29, 51, 56isumcl 15577 . . . . 5 (𝜑 → Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) ∈ ℂ)
581dmgmn0 26285 . . . . . 6 (𝜑𝐴 ≠ 0)
5930, 58logcld 25836 . . . . 5 (𝜑 → (log‘𝐴) ∈ ℂ)
60 efsub 15913 . . . . 5 ((Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) ∈ ℂ ∧ (log‘𝐴) ∈ ℂ) → (exp‘(Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) − (log‘𝐴))) = ((exp‘Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) / (exp‘(log‘𝐴))))
6157, 59, 60syl2anc 585 . . . 4 (𝜑 → (exp‘(Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) − (log‘𝐴))) = ((exp‘Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) / (exp‘(log‘𝐴))))
6216, 17, 29, 51, 56iprodefisum 34062 . . . . . 6 (𝜑 → ∏𝑘 ∈ ℕ (exp‘((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) = (exp‘Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))))
63 efsub 15913 . . . . . . . . 9 (((𝐴 · (log‘((𝑘 + 1) / 𝑘))) ∈ ℂ ∧ (log‘((𝐴 / 𝑘) + 1)) ∈ ℂ) → (exp‘((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) = ((exp‘(𝐴 · (log‘((𝑘 + 1) / 𝑘)))) / (exp‘(log‘((𝐴 / 𝑘) + 1)))))
6443, 50, 63syl2anc 585 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (exp‘((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) = ((exp‘(𝐴 · (log‘((𝑘 + 1) / 𝑘)))) / (exp‘(log‘((𝐴 / 𝑘) + 1)))))
6536, 45, 36, 38divdird 11899 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) / 𝑘) = ((𝑘 / 𝑘) + (1 / 𝑘)))
6636, 38dividd 11859 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (𝑘 / 𝑘) = 1)
6766oveq1d 7361 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → ((𝑘 / 𝑘) + (1 / 𝑘)) = (1 + (1 / 𝑘)))
6865, 67eqtrd 2777 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) / 𝑘) = (1 + (1 / 𝑘)))
6968fveq2d 6838 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (log‘((𝑘 + 1) / 𝑘)) = (log‘(1 + (1 / 𝑘))))
7069oveq2d 7362 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐴 · (log‘((𝑘 + 1) / 𝑘))) = (𝐴 · (log‘(1 + (1 / 𝑘)))))
7170fveq2d 6838 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (exp‘(𝐴 · (log‘((𝑘 + 1) / 𝑘)))) = (exp‘(𝐴 · (log‘(1 + (1 / 𝑘))))))
72 1rp 12844 . . . . . . . . . . . . . 14 1 ∈ ℝ+
7372a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 1 ∈ ℝ+)
7448nnrpd 12880 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℝ+)
7574rpreccld 12892 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ+)
7673, 75rpaddcld 12897 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (1 + (1 / 𝑘)) ∈ ℝ+)
7776rpcnd 12884 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (1 + (1 / 𝑘)) ∈ ℂ)
7876rpne0d 12887 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (1 + (1 / 𝑘)) ≠ 0)
7977, 78, 31cxpefd 25977 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((1 + (1 / 𝑘))↑𝑐𝐴) = (exp‘(𝐴 · (log‘(1 + (1 / 𝑘))))))
8071, 79eqtr4d 2780 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (exp‘(𝐴 · (log‘((𝑘 + 1) / 𝑘)))) = ((1 + (1 / 𝑘))↑𝑐𝐴))
81 eflog 25842 . . . . . . . . . . 11 ((((𝐴 / 𝑘) + 1) ∈ ℂ ∧ ((𝐴 / 𝑘) + 1) ≠ 0) → (exp‘(log‘((𝐴 / 𝑘) + 1))) = ((𝐴 / 𝑘) + 1))
8246, 49, 81syl2anc 585 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (exp‘(log‘((𝐴 / 𝑘) + 1))) = ((𝐴 / 𝑘) + 1))
8344, 45addcomd 11287 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((𝐴 / 𝑘) + 1) = (1 + (𝐴 / 𝑘)))
8482, 83eqtrd 2777 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (exp‘(log‘((𝐴 / 𝑘) + 1))) = (1 + (𝐴 / 𝑘)))
8580, 84oveq12d 7364 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((exp‘(𝐴 · (log‘((𝑘 + 1) / 𝑘)))) / (exp‘(log‘((𝐴 / 𝑘) + 1)))) = (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))))
8664, 85eqtrd 2777 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (exp‘((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) = (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))))
8786prodeq2dv 15737 . . . . . 6 (𝜑 → ∏𝑘 ∈ ℕ (exp‘((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) = ∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))))
8862, 87eqtr3d 2779 . . . . 5 (𝜑 → (exp‘Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) = ∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))))
89 eflog 25842 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
9030, 58, 89syl2anc 585 . . . . 5 (𝜑 → (exp‘(log‘𝐴)) = 𝐴)
9188, 90oveq12d 7364 . . . 4 (𝜑 → ((exp‘Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) / (exp‘(log‘𝐴))) = (∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))) / 𝐴))
9261, 91eqtrd 2777 . . 3 (𝜑 → (exp‘(Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) − (log‘𝐴))) = (∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))) / 𝐴))
9315, 92eqtrd 2777 . 2 (𝜑 → (exp‘(log Γ‘𝐴)) = (∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))) / 𝐴))
943, 93eqtr3d 2779 1 (𝜑 → (Γ‘𝐴) = (∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))) / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1541  wcel 2106  wne 2941  cdif 3902   class class class wbr 5100  cmpt 5183  dom cdm 5627  cfv 6488  (class class class)co 7346  cc 10979  0cc0 10981  1c1 10982   + caddc 10984   · cmul 10986  cmin 11315   / cdiv 11742  cn 12083  cz 12429  +crp 12840  seqcseq 13831  cli 15297  Σcsu 15501  cprod 15719  expce 15875  logclog 25820  𝑐ccxp 25821  log Γclgam 26275  Γcgam 26276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5237  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379  ax-un 7659  ax-inf2 9507  ax-cnex 11037  ax-resscn 11038  ax-1cn 11039  ax-icn 11040  ax-addcl 11041  ax-addrcl 11042  ax-mulcl 11043  ax-mulrcl 11044  ax-mulcom 11045  ax-addass 11046  ax-mulass 11047  ax-distr 11048  ax-i2m1 11049  ax-1ne0 11050  ax-1rid 11051  ax-rnegex 11052  ax-rrecex 11053  ax-cnre 11054  ax-pre-lttri 11055  ax-pre-lttrn 11056  ax-pre-ltadd 11057  ax-pre-mulgt0 11058  ax-pre-sup 11059  ax-addf 11060  ax-mulf 11061
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3924  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-tp 4586  df-op 4588  df-uni 4861  df-int 4903  df-iun 4951  df-iin 4952  df-br 5101  df-opab 5163  df-mpt 5184  df-tr 5218  df-id 5525  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5582  df-se 5583  df-we 5584  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-pred 6246  df-ord 6313  df-on 6314  df-lim 6315  df-suc 6316  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7302  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7604  df-om 7790  df-1st 7908  df-2nd 7909  df-supp 8057  df-frecs 8176  df-wrecs 8207  df-recs 8281  df-rdg 8320  df-1o 8376  df-2o 8377  df-oadd 8380  df-er 8578  df-map 8697  df-pm 8698  df-ixp 8766  df-en 8814  df-dom 8815  df-sdom 8816  df-fin 8817  df-fsupp 9236  df-fi 9277  df-sup 9308  df-inf 9309  df-oi 9376  df-dju 9767  df-card 9805  df-pnf 11121  df-mnf 11122  df-xr 11123  df-ltxr 11124  df-le 11125  df-sub 11317  df-neg 11318  df-div 11743  df-nn 12084  df-2 12146  df-3 12147  df-4 12148  df-5 12149  df-6 12150  df-7 12151  df-8 12152  df-9 12153  df-n0 12344  df-z 12430  df-dec 12548  df-uz 12693  df-q 12799  df-rp 12841  df-xneg 12958  df-xadd 12959  df-xmul 12960  df-ioo 13193  df-ioc 13194  df-ico 13195  df-icc 13196  df-fz 13350  df-fzo 13493  df-fl 13622  df-mod 13700  df-seq 13832  df-exp 13893  df-fac 14098  df-bc 14127  df-hash 14155  df-shft 14882  df-cj 14914  df-re 14915  df-im 14916  df-sqrt 15050  df-abs 15051  df-limsup 15284  df-clim 15301  df-rlim 15302  df-sum 15502  df-prod 15720  df-ef 15881  df-sin 15883  df-cos 15884  df-tan 15885  df-pi 15886  df-struct 16950  df-sets 16967  df-slot 16985  df-ndx 16997  df-base 17015  df-ress 17044  df-plusg 17077  df-mulr 17078  df-starv 17079  df-sca 17080  df-vsca 17081  df-ip 17082  df-tset 17083  df-ple 17084  df-ds 17086  df-unif 17087  df-hom 17088  df-cco 17089  df-rest 17235  df-topn 17236  df-0g 17254  df-gsum 17255  df-topgen 17256  df-pt 17257  df-prds 17260  df-xrs 17315  df-qtop 17320  df-imas 17321  df-xps 17323  df-mre 17397  df-mrc 17398  df-acs 17400  df-mgm 18428  df-sgrp 18477  df-mnd 18488  df-submnd 18533  df-mulg 18802  df-cntz 19024  df-cmn 19488  df-psmet 20699  df-xmet 20700  df-met 20701  df-bl 20702  df-mopn 20703  df-fbas 20704  df-fg 20705  df-cnfld 20708  df-top 22153  df-topon 22170  df-topsp 22192  df-bases 22206  df-cld 22280  df-ntr 22281  df-cls 22282  df-nei 22359  df-lp 22397  df-perf 22398  df-cn 22488  df-cnp 22489  df-haus 22576  df-cmp 22648  df-tx 22823  df-hmeo 23016  df-fil 23107  df-fm 23199  df-flim 23200  df-flf 23201  df-xms 23583  df-ms 23584  df-tms 23585  df-cncf 24151  df-limc 25140  df-dv 25141  df-ulm 25646  df-log 25822  df-cxp 25823  df-lgam 26278  df-gam 26279
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator