Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iprodgam Structured version   Visualization version   GIF version

Theorem iprodgam 35759
Description: An infinite product version of Euler's gamma function. (Contributed by Scott Fenton, 12-Feb-2018.)
Hypothesis
Ref Expression
iprodgam.1 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
Assertion
Ref Expression
iprodgam (𝜑 → (Γ‘𝐴) = (∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))) / 𝐴))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘

Proof of Theorem iprodgam
Dummy variables 𝑗 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iprodgam.1 . . 3 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
2 eflgam 27007 . . 3 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (exp‘(log Γ‘𝐴)) = (Γ‘𝐴))
31, 2syl 17 . 2 (𝜑 → (exp‘(log Γ‘𝐴)) = (Γ‘𝐴))
4 oveq1 7412 . . . . . . . . 9 (𝑧 = 𝐴 → (𝑧 · (log‘((𝑘 + 1) / 𝑘))) = (𝐴 · (log‘((𝑘 + 1) / 𝑘))))
5 oveq1 7412 . . . . . . . . . 10 (𝑧 = 𝐴 → (𝑧 / 𝑘) = (𝐴 / 𝑘))
65fvoveq1d 7427 . . . . . . . . 9 (𝑧 = 𝐴 → (log‘((𝑧 / 𝑘) + 1)) = (log‘((𝐴 / 𝑘) + 1)))
74, 6oveq12d 7423 . . . . . . . 8 (𝑧 = 𝐴 → ((𝑧 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝑧 / 𝑘) + 1))) = ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))))
87sumeq2sdv 15719 . . . . . . 7 (𝑧 = 𝐴 → Σ𝑘 ∈ ℕ ((𝑧 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝑧 / 𝑘) + 1))) = Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))))
9 fveq2 6876 . . . . . . 7 (𝑧 = 𝐴 → (log‘𝑧) = (log‘𝐴))
108, 9oveq12d 7423 . . . . . 6 (𝑧 = 𝐴 → (Σ𝑘 ∈ ℕ ((𝑧 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝑧 / 𝑘) + 1))) − (log‘𝑧)) = (Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) − (log‘𝐴)))
11 df-lgam 26981 . . . . . 6 log Γ = (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑘 ∈ ℕ ((𝑧 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝑧 / 𝑘) + 1))) − (log‘𝑧)))
12 ovex 7438 . . . . . 6 𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) − (log‘𝐴)) ∈ V
1310, 11, 12fvmpt 6986 . . . . 5 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (log Γ‘𝐴) = (Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) − (log‘𝐴)))
141, 13syl 17 . . . 4 (𝜑 → (log Γ‘𝐴) = (Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) − (log‘𝐴)))
1514fveq2d 6880 . . 3 (𝜑 → (exp‘(log Γ‘𝐴)) = (exp‘(Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) − (log‘𝐴))))
16 nnuz 12895 . . . . . 6 ℕ = (ℤ‘1)
17 1zzd 12623 . . . . . 6 (𝜑 → 1 ∈ ℤ)
18 oveq1 7412 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝑗 + 1) = (𝑘 + 1))
19 id 22 . . . . . . . . . . . 12 (𝑗 = 𝑘𝑗 = 𝑘)
2018, 19oveq12d 7423 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝑗 + 1) / 𝑗) = ((𝑘 + 1) / 𝑘))
2120fveq2d 6880 . . . . . . . . . 10 (𝑗 = 𝑘 → (log‘((𝑗 + 1) / 𝑗)) = (log‘((𝑘 + 1) / 𝑘)))
2221oveq2d 7421 . . . . . . . . 9 (𝑗 = 𝑘 → (𝐴 · (log‘((𝑗 + 1) / 𝑗))) = (𝐴 · (log‘((𝑘 + 1) / 𝑘))))
23 oveq2 7413 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝐴 / 𝑗) = (𝐴 / 𝑘))
2423fvoveq1d 7427 . . . . . . . . 9 (𝑗 = 𝑘 → (log‘((𝐴 / 𝑗) + 1)) = (log‘((𝐴 / 𝑘) + 1)))
2522, 24oveq12d 7423 . . . . . . . 8 (𝑗 = 𝑘 → ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))) = ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))))
26 eqid 2735 . . . . . . . 8 (𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1)))) = (𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))))
27 ovex 7438 . . . . . . . 8 ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) ∈ V
2825, 26, 27fvmpt 6986 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))))‘𝑘) = ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))))
2928adantl 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))))‘𝑘) = ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))))
301eldifad 3938 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
3130adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
32 peano2nn 12252 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
3332adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
3433nncnd 12256 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℂ)
35 nncn 12248 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
3635adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
37 nnne0 12274 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
3837adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝑘 ≠ 0)
3934, 36, 38divcld 12017 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) / 𝑘) ∈ ℂ)
4033nnne0d 12290 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ≠ 0)
4134, 36, 40, 38divne0d 12033 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) / 𝑘) ≠ 0)
4239, 41logcld 26531 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (log‘((𝑘 + 1) / 𝑘)) ∈ ℂ)
4331, 42mulcld 11255 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐴 · (log‘((𝑘 + 1) / 𝑘))) ∈ ℂ)
4431, 36, 38divcld 12017 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐴 / 𝑘) ∈ ℂ)
45 1cnd 11230 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 1 ∈ ℂ)
4644, 45addcld 11254 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((𝐴 / 𝑘) + 1) ∈ ℂ)
471adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
48 simpr 484 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
4947, 48dmgmdivn0 26990 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((𝐴 / 𝑘) + 1) ≠ 0)
5046, 49logcld 26531 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (log‘((𝐴 / 𝑘) + 1)) ∈ ℂ)
5143, 50subcld 11594 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) ∈ ℂ)
5226, 1lgamcvg 27016 . . . . . . 7 (𝜑 → seq1( + , (𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))))) ⇝ ((log Γ‘𝐴) + (log‘𝐴)))
53 seqex 14021 . . . . . . . 8 seq1( + , (𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))))) ∈ V
54 ovex 7438 . . . . . . . 8 ((log Γ‘𝐴) + (log‘𝐴)) ∈ V
5553, 54breldm 5888 . . . . . . 7 (seq1( + , (𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))))) ⇝ ((log Γ‘𝐴) + (log‘𝐴)) → seq1( + , (𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))))) ∈ dom ⇝ )
5652, 55syl 17 . . . . . 6 (𝜑 → seq1( + , (𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))))) ∈ dom ⇝ )
5716, 17, 29, 51, 56isumcl 15777 . . . . 5 (𝜑 → Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) ∈ ℂ)
581dmgmn0 26988 . . . . . 6 (𝜑𝐴 ≠ 0)
5930, 58logcld 26531 . . . . 5 (𝜑 → (log‘𝐴) ∈ ℂ)
60 efsub 16118 . . . . 5 ((Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) ∈ ℂ ∧ (log‘𝐴) ∈ ℂ) → (exp‘(Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) − (log‘𝐴))) = ((exp‘Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) / (exp‘(log‘𝐴))))
6157, 59, 60syl2anc 584 . . . 4 (𝜑 → (exp‘(Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) − (log‘𝐴))) = ((exp‘Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) / (exp‘(log‘𝐴))))
6216, 17, 29, 51, 56iprodefisum 35758 . . . . . 6 (𝜑 → ∏𝑘 ∈ ℕ (exp‘((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) = (exp‘Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))))
63 efsub 16118 . . . . . . . . 9 (((𝐴 · (log‘((𝑘 + 1) / 𝑘))) ∈ ℂ ∧ (log‘((𝐴 / 𝑘) + 1)) ∈ ℂ) → (exp‘((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) = ((exp‘(𝐴 · (log‘((𝑘 + 1) / 𝑘)))) / (exp‘(log‘((𝐴 / 𝑘) + 1)))))
6443, 50, 63syl2anc 584 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (exp‘((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) = ((exp‘(𝐴 · (log‘((𝑘 + 1) / 𝑘)))) / (exp‘(log‘((𝐴 / 𝑘) + 1)))))
6536, 45, 36, 38divdird 12055 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) / 𝑘) = ((𝑘 / 𝑘) + (1 / 𝑘)))
6636, 38dividd 12015 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (𝑘 / 𝑘) = 1)
6766oveq1d 7420 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → ((𝑘 / 𝑘) + (1 / 𝑘)) = (1 + (1 / 𝑘)))
6865, 67eqtrd 2770 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) / 𝑘) = (1 + (1 / 𝑘)))
6968fveq2d 6880 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (log‘((𝑘 + 1) / 𝑘)) = (log‘(1 + (1 / 𝑘))))
7069oveq2d 7421 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐴 · (log‘((𝑘 + 1) / 𝑘))) = (𝐴 · (log‘(1 + (1 / 𝑘)))))
7170fveq2d 6880 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (exp‘(𝐴 · (log‘((𝑘 + 1) / 𝑘)))) = (exp‘(𝐴 · (log‘(1 + (1 / 𝑘))))))
72 1rp 13012 . . . . . . . . . . . . . 14 1 ∈ ℝ+
7372a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 1 ∈ ℝ+)
7448nnrpd 13049 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℝ+)
7574rpreccld 13061 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ+)
7673, 75rpaddcld 13066 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (1 + (1 / 𝑘)) ∈ ℝ+)
7776rpcnd 13053 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (1 + (1 / 𝑘)) ∈ ℂ)
7876rpne0d 13056 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (1 + (1 / 𝑘)) ≠ 0)
7977, 78, 31cxpefd 26673 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((1 + (1 / 𝑘))↑𝑐𝐴) = (exp‘(𝐴 · (log‘(1 + (1 / 𝑘))))))
8071, 79eqtr4d 2773 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (exp‘(𝐴 · (log‘((𝑘 + 1) / 𝑘)))) = ((1 + (1 / 𝑘))↑𝑐𝐴))
81 eflog 26537 . . . . . . . . . . 11 ((((𝐴 / 𝑘) + 1) ∈ ℂ ∧ ((𝐴 / 𝑘) + 1) ≠ 0) → (exp‘(log‘((𝐴 / 𝑘) + 1))) = ((𝐴 / 𝑘) + 1))
8246, 49, 81syl2anc 584 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (exp‘(log‘((𝐴 / 𝑘) + 1))) = ((𝐴 / 𝑘) + 1))
8344, 45addcomd 11437 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((𝐴 / 𝑘) + 1) = (1 + (𝐴 / 𝑘)))
8482, 83eqtrd 2770 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (exp‘(log‘((𝐴 / 𝑘) + 1))) = (1 + (𝐴 / 𝑘)))
8580, 84oveq12d 7423 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((exp‘(𝐴 · (log‘((𝑘 + 1) / 𝑘)))) / (exp‘(log‘((𝐴 / 𝑘) + 1)))) = (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))))
8664, 85eqtrd 2770 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (exp‘((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) = (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))))
8786prodeq2dv 15938 . . . . . 6 (𝜑 → ∏𝑘 ∈ ℕ (exp‘((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) = ∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))))
8862, 87eqtr3d 2772 . . . . 5 (𝜑 → (exp‘Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) = ∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))))
89 eflog 26537 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
9030, 58, 89syl2anc 584 . . . . 5 (𝜑 → (exp‘(log‘𝐴)) = 𝐴)
9188, 90oveq12d 7423 . . . 4 (𝜑 → ((exp‘Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) / (exp‘(log‘𝐴))) = (∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))) / 𝐴))
9261, 91eqtrd 2770 . . 3 (𝜑 → (exp‘(Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) − (log‘𝐴))) = (∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))) / 𝐴))
9315, 92eqtrd 2770 . 2 (𝜑 → (exp‘(log Γ‘𝐴)) = (∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))) / 𝐴))
943, 93eqtr3d 2772 1 (𝜑 → (Γ‘𝐴) = (∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))) / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  cdif 3923   class class class wbr 5119  cmpt 5201  dom cdm 5654  cfv 6531  (class class class)co 7405  cc 11127  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  cmin 11466   / cdiv 11894  cn 12240  cz 12588  +crp 13008  seqcseq 14019  cli 15500  Σcsu 15702  cprod 15919  expce 16077  logclog 26515  𝑐ccxp 26516  log Γclgam 26978  Γcgam 26979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-prod 15920  df-ef 16083  df-sin 16085  df-cos 16086  df-tan 16087  df-pi 16088  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-cmp 23325  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820  df-ulm 26338  df-log 26517  df-cxp 26518  df-lgam 26981  df-gam 26982
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator