Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iprodgam Structured version   Visualization version   GIF version

Theorem iprodgam 33088
Description: An infinite product version of Euler's gamma function. (Contributed by Scott Fenton, 12-Feb-2018.)
Hypothesis
Ref Expression
iprodgam.1 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
Assertion
Ref Expression
iprodgam (𝜑 → (Γ‘𝐴) = (∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))) / 𝐴))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘

Proof of Theorem iprodgam
Dummy variables 𝑗 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iprodgam.1 . . 3 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
2 eflgam 25634 . . 3 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (exp‘(log Γ‘𝐴)) = (Γ‘𝐴))
31, 2syl 17 . 2 (𝜑 → (exp‘(log Γ‘𝐴)) = (Γ‘𝐴))
4 oveq1 7146 . . . . . . . . 9 (𝑧 = 𝐴 → (𝑧 · (log‘((𝑘 + 1) / 𝑘))) = (𝐴 · (log‘((𝑘 + 1) / 𝑘))))
5 oveq1 7146 . . . . . . . . . 10 (𝑧 = 𝐴 → (𝑧 / 𝑘) = (𝐴 / 𝑘))
65fvoveq1d 7161 . . . . . . . . 9 (𝑧 = 𝐴 → (log‘((𝑧 / 𝑘) + 1)) = (log‘((𝐴 / 𝑘) + 1)))
74, 6oveq12d 7157 . . . . . . . 8 (𝑧 = 𝐴 → ((𝑧 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝑧 / 𝑘) + 1))) = ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))))
87sumeq2sdv 15057 . . . . . . 7 (𝑧 = 𝐴 → Σ𝑘 ∈ ℕ ((𝑧 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝑧 / 𝑘) + 1))) = Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))))
9 fveq2 6649 . . . . . . 7 (𝑧 = 𝐴 → (log‘𝑧) = (log‘𝐴))
108, 9oveq12d 7157 . . . . . 6 (𝑧 = 𝐴 → (Σ𝑘 ∈ ℕ ((𝑧 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝑧 / 𝑘) + 1))) − (log‘𝑧)) = (Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) − (log‘𝐴)))
11 df-lgam 25608 . . . . . 6 log Γ = (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑘 ∈ ℕ ((𝑧 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝑧 / 𝑘) + 1))) − (log‘𝑧)))
12 ovex 7172 . . . . . 6 𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) − (log‘𝐴)) ∈ V
1310, 11, 12fvmpt 6749 . . . . 5 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (log Γ‘𝐴) = (Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) − (log‘𝐴)))
141, 13syl 17 . . . 4 (𝜑 → (log Γ‘𝐴) = (Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) − (log‘𝐴)))
1514fveq2d 6653 . . 3 (𝜑 → (exp‘(log Γ‘𝐴)) = (exp‘(Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) − (log‘𝐴))))
16 nnuz 12273 . . . . . 6 ℕ = (ℤ‘1)
17 1zzd 12005 . . . . . 6 (𝜑 → 1 ∈ ℤ)
18 oveq1 7146 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝑗 + 1) = (𝑘 + 1))
19 id 22 . . . . . . . . . . . 12 (𝑗 = 𝑘𝑗 = 𝑘)
2018, 19oveq12d 7157 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝑗 + 1) / 𝑗) = ((𝑘 + 1) / 𝑘))
2120fveq2d 6653 . . . . . . . . . 10 (𝑗 = 𝑘 → (log‘((𝑗 + 1) / 𝑗)) = (log‘((𝑘 + 1) / 𝑘)))
2221oveq2d 7155 . . . . . . . . 9 (𝑗 = 𝑘 → (𝐴 · (log‘((𝑗 + 1) / 𝑗))) = (𝐴 · (log‘((𝑘 + 1) / 𝑘))))
23 oveq2 7147 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝐴 / 𝑗) = (𝐴 / 𝑘))
2423fvoveq1d 7161 . . . . . . . . 9 (𝑗 = 𝑘 → (log‘((𝐴 / 𝑗) + 1)) = (log‘((𝐴 / 𝑘) + 1)))
2522, 24oveq12d 7157 . . . . . . . 8 (𝑗 = 𝑘 → ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))) = ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))))
26 eqid 2801 . . . . . . . 8 (𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1)))) = (𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))))
27 ovex 7172 . . . . . . . 8 ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) ∈ V
2825, 26, 27fvmpt 6749 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))))‘𝑘) = ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))))
2928adantl 485 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))))‘𝑘) = ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))))
301eldifad 3896 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
3130adantr 484 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
32 peano2nn 11641 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
3332adantl 485 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
3433nncnd 11645 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℂ)
35 nncn 11637 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
3635adantl 485 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
37 nnne0 11663 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
3837adantl 485 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝑘 ≠ 0)
3934, 36, 38divcld 11409 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) / 𝑘) ∈ ℂ)
4033nnne0d 11679 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ≠ 0)
4134, 36, 40, 38divne0d 11425 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) / 𝑘) ≠ 0)
4239, 41logcld 25166 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (log‘((𝑘 + 1) / 𝑘)) ∈ ℂ)
4331, 42mulcld 10654 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐴 · (log‘((𝑘 + 1) / 𝑘))) ∈ ℂ)
4431, 36, 38divcld 11409 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐴 / 𝑘) ∈ ℂ)
45 1cnd 10629 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 1 ∈ ℂ)
4644, 45addcld 10653 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((𝐴 / 𝑘) + 1) ∈ ℂ)
471adantr 484 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
48 simpr 488 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
4947, 48dmgmdivn0 25617 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((𝐴 / 𝑘) + 1) ≠ 0)
5046, 49logcld 25166 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (log‘((𝐴 / 𝑘) + 1)) ∈ ℂ)
5143, 50subcld 10990 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) ∈ ℂ)
5226, 1lgamcvg 25643 . . . . . . 7 (𝜑 → seq1( + , (𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))))) ⇝ ((log Γ‘𝐴) + (log‘𝐴)))
53 seqex 13370 . . . . . . . 8 seq1( + , (𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))))) ∈ V
54 ovex 7172 . . . . . . . 8 ((log Γ‘𝐴) + (log‘𝐴)) ∈ V
5553, 54breldm 5745 . . . . . . 7 (seq1( + , (𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))))) ⇝ ((log Γ‘𝐴) + (log‘𝐴)) → seq1( + , (𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))))) ∈ dom ⇝ )
5652, 55syl 17 . . . . . 6 (𝜑 → seq1( + , (𝑗 ∈ ℕ ↦ ((𝐴 · (log‘((𝑗 + 1) / 𝑗))) − (log‘((𝐴 / 𝑗) + 1))))) ∈ dom ⇝ )
5716, 17, 29, 51, 56isumcl 15112 . . . . 5 (𝜑 → Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) ∈ ℂ)
581dmgmn0 25615 . . . . . 6 (𝜑𝐴 ≠ 0)
5930, 58logcld 25166 . . . . 5 (𝜑 → (log‘𝐴) ∈ ℂ)
60 efsub 15449 . . . . 5 ((Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) ∈ ℂ ∧ (log‘𝐴) ∈ ℂ) → (exp‘(Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) − (log‘𝐴))) = ((exp‘Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) / (exp‘(log‘𝐴))))
6157, 59, 60syl2anc 587 . . . 4 (𝜑 → (exp‘(Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) − (log‘𝐴))) = ((exp‘Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) / (exp‘(log‘𝐴))))
6216, 17, 29, 51, 56iprodefisum 33087 . . . . . 6 (𝜑 → ∏𝑘 ∈ ℕ (exp‘((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) = (exp‘Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))))
63 efsub 15449 . . . . . . . . 9 (((𝐴 · (log‘((𝑘 + 1) / 𝑘))) ∈ ℂ ∧ (log‘((𝐴 / 𝑘) + 1)) ∈ ℂ) → (exp‘((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) = ((exp‘(𝐴 · (log‘((𝑘 + 1) / 𝑘)))) / (exp‘(log‘((𝐴 / 𝑘) + 1)))))
6443, 50, 63syl2anc 587 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (exp‘((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) = ((exp‘(𝐴 · (log‘((𝑘 + 1) / 𝑘)))) / (exp‘(log‘((𝐴 / 𝑘) + 1)))))
6536, 45, 36, 38divdird 11447 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) / 𝑘) = ((𝑘 / 𝑘) + (1 / 𝑘)))
6636, 38dividd 11407 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (𝑘 / 𝑘) = 1)
6766oveq1d 7154 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → ((𝑘 / 𝑘) + (1 / 𝑘)) = (1 + (1 / 𝑘)))
6865, 67eqtrd 2836 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) / 𝑘) = (1 + (1 / 𝑘)))
6968fveq2d 6653 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (log‘((𝑘 + 1) / 𝑘)) = (log‘(1 + (1 / 𝑘))))
7069oveq2d 7155 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐴 · (log‘((𝑘 + 1) / 𝑘))) = (𝐴 · (log‘(1 + (1 / 𝑘)))))
7170fveq2d 6653 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (exp‘(𝐴 · (log‘((𝑘 + 1) / 𝑘)))) = (exp‘(𝐴 · (log‘(1 + (1 / 𝑘))))))
72 1rp 12385 . . . . . . . . . . . . . 14 1 ∈ ℝ+
7372a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 1 ∈ ℝ+)
7448nnrpd 12421 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℝ+)
7574rpreccld 12433 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ+)
7673, 75rpaddcld 12438 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (1 + (1 / 𝑘)) ∈ ℝ+)
7776rpcnd 12425 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (1 + (1 / 𝑘)) ∈ ℂ)
7876rpne0d 12428 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (1 + (1 / 𝑘)) ≠ 0)
7977, 78, 31cxpefd 25307 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((1 + (1 / 𝑘))↑𝑐𝐴) = (exp‘(𝐴 · (log‘(1 + (1 / 𝑘))))))
8071, 79eqtr4d 2839 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (exp‘(𝐴 · (log‘((𝑘 + 1) / 𝑘)))) = ((1 + (1 / 𝑘))↑𝑐𝐴))
81 eflog 25172 . . . . . . . . . . 11 ((((𝐴 / 𝑘) + 1) ∈ ℂ ∧ ((𝐴 / 𝑘) + 1) ≠ 0) → (exp‘(log‘((𝐴 / 𝑘) + 1))) = ((𝐴 / 𝑘) + 1))
8246, 49, 81syl2anc 587 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (exp‘(log‘((𝐴 / 𝑘) + 1))) = ((𝐴 / 𝑘) + 1))
8344, 45addcomd 10835 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((𝐴 / 𝑘) + 1) = (1 + (𝐴 / 𝑘)))
8482, 83eqtrd 2836 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (exp‘(log‘((𝐴 / 𝑘) + 1))) = (1 + (𝐴 / 𝑘)))
8580, 84oveq12d 7157 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((exp‘(𝐴 · (log‘((𝑘 + 1) / 𝑘)))) / (exp‘(log‘((𝐴 / 𝑘) + 1)))) = (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))))
8664, 85eqtrd 2836 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (exp‘((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) = (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))))
8786prodeq2dv 15273 . . . . . 6 (𝜑 → ∏𝑘 ∈ ℕ (exp‘((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) = ∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))))
8862, 87eqtr3d 2838 . . . . 5 (𝜑 → (exp‘Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) = ∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))))
89 eflog 25172 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
9030, 58, 89syl2anc 587 . . . . 5 (𝜑 → (exp‘(log‘𝐴)) = 𝐴)
9188, 90oveq12d 7157 . . . 4 (𝜑 → ((exp‘Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) / (exp‘(log‘𝐴))) = (∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))) / 𝐴))
9261, 91eqtrd 2836 . . 3 (𝜑 → (exp‘(Σ𝑘 ∈ ℕ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) − (log‘𝐴))) = (∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))) / 𝐴))
9315, 92eqtrd 2836 . 2 (𝜑 → (exp‘(log Γ‘𝐴)) = (∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))) / 𝐴))
943, 93eqtr3d 2838 1 (𝜑 → (Γ‘𝐴) = (∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝑐𝐴) / (1 + (𝐴 / 𝑘))) / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2112  wne 2990  cdif 3881   class class class wbr 5033  cmpt 5113  dom cdm 5523  cfv 6328  (class class class)co 7139  cc 10528  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535  cmin 10863   / cdiv 11290  cn 11629  cz 11973  +crp 12381  seqcseq 13368  cli 14837  Σcsu 15038  cprod 15255  expce 15411  logclog 25150  𝑐ccxp 25151  log Γclgam 25605  Γcgam 25606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-fac 13634  df-bc 13663  df-hash 13691  df-shft 14422  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-limsup 14824  df-clim 14841  df-rlim 14842  df-sum 15039  df-prod 15256  df-ef 15417  df-sin 15419  df-cos 15420  df-tan 15421  df-pi 15422  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-starv 16576  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-hom 16585  df-cco 16586  df-rest 16692  df-topn 16693  df-0g 16711  df-gsum 16712  df-topgen 16713  df-pt 16714  df-prds 16717  df-xrs 16771  df-qtop 16776  df-imas 16777  df-xps 16779  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-submnd 17953  df-mulg 18221  df-cntz 18443  df-cmn 18904  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-fbas 20092  df-fg 20093  df-cnfld 20096  df-top 21503  df-topon 21520  df-topsp 21542  df-bases 21555  df-cld 21628  df-ntr 21629  df-cls 21630  df-nei 21707  df-lp 21745  df-perf 21746  df-cn 21836  df-cnp 21837  df-haus 21924  df-cmp 21996  df-tx 22171  df-hmeo 22364  df-fil 22455  df-fm 22547  df-flim 22548  df-flf 22549  df-xms 22931  df-ms 22932  df-tms 22933  df-cncf 23487  df-limc 24473  df-dv 24474  df-ulm 24976  df-log 25152  df-cxp 25153  df-lgam 25608  df-gam 25609
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator