MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamgulm2 Structured version   Visualization version   GIF version

Theorem lgamgulm2 27079
Description: Rewrite the limit of the sequence 𝐺 in terms of the log-Gamma function. (Contributed by Mario Carneiro, 6-Jul-2017.)
Hypotheses
Ref Expression
lgamgulm.r (𝜑𝑅 ∈ ℕ)
lgamgulm.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
lgamgulm.g 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
Assertion
Ref Expression
lgamgulm2 (𝜑 → (∀𝑧𝑈 (log Γ‘𝑧) ∈ ℂ ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))))
Distinct variable groups:   𝑘,𝑚,𝑥,𝑧,𝑅   𝑈,𝑚,𝑧   𝜑,𝑚,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑘)   𝑈(𝑥,𝑘)   𝐺(𝑥,𝑧,𝑘,𝑚)

Proof of Theorem lgamgulm2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 lgamgulm.r . . . . . . 7 (𝜑𝑅 ∈ ℕ)
2 lgamgulm.u . . . . . . 7 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
31, 2lgamgulmlem1 27072 . . . . . 6 (𝜑𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
43sselda 3983 . . . . 5 ((𝜑𝑧𝑈) → 𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
5 ovex 7464 . . . . 5 𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) − (log‘𝑧)) ∈ V
6 df-lgam 27062 . . . . . 6 log Γ = (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) − (log‘𝑧)))
76fvmpt2 7027 . . . . 5 ((𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ (Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) − (log‘𝑧)) ∈ V) → (log Γ‘𝑧) = (Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) − (log‘𝑧)))
84, 5, 7sylancl 586 . . . 4 ((𝜑𝑧𝑈) → (log Γ‘𝑧) = (Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) − (log‘𝑧)))
9 nnuz 12921 . . . . . . 7 ℕ = (ℤ‘1)
10 1zzd 12648 . . . . . . 7 ((𝜑𝑧𝑈) → 1 ∈ ℤ)
11 oveq1 7438 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1))
12 id 22 . . . . . . . . . . . . 13 (𝑚 = 𝑛𝑚 = 𝑛)
1311, 12oveq12d 7449 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝑚 + 1) / 𝑚) = ((𝑛 + 1) / 𝑛))
1413fveq2d 6910 . . . . . . . . . . 11 (𝑚 = 𝑛 → (log‘((𝑚 + 1) / 𝑚)) = (log‘((𝑛 + 1) / 𝑛)))
1514oveq2d 7447 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝑧 · (log‘((𝑚 + 1) / 𝑚))) = (𝑧 · (log‘((𝑛 + 1) / 𝑛))))
16 oveq2 7439 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑧 / 𝑚) = (𝑧 / 𝑛))
1716fvoveq1d 7453 . . . . . . . . . 10 (𝑚 = 𝑛 → (log‘((𝑧 / 𝑚) + 1)) = (log‘((𝑧 / 𝑛) + 1)))
1815, 17oveq12d 7449 . . . . . . . . 9 (𝑚 = 𝑛 → ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) = ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))
19 eqid 2737 . . . . . . . . 9 (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))) = (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))
20 ovex 7464 . . . . . . . . 9 ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) ∈ V
2118, 19, 20fvmpt 7016 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))‘𝑛) = ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))
2221adantl 481 . . . . . . 7 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))‘𝑛) = ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))
234eldifad 3963 . . . . . . . . . 10 ((𝜑𝑧𝑈) → 𝑧 ∈ ℂ)
2423adantr 480 . . . . . . . . 9 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 𝑧 ∈ ℂ)
25 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
2625peano2nnd 12283 . . . . . . . . . . . . 13 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
2726nnrpd 13075 . . . . . . . . . . . 12 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℝ+)
2825nnrpd 13075 . . . . . . . . . . . 12 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+)
2927, 28rpdivcld 13094 . . . . . . . . . . 11 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → ((𝑛 + 1) / 𝑛) ∈ ℝ+)
3029relogcld 26665 . . . . . . . . . 10 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (log‘((𝑛 + 1) / 𝑛)) ∈ ℝ)
3130recnd 11289 . . . . . . . . 9 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (log‘((𝑛 + 1) / 𝑛)) ∈ ℂ)
3224, 31mulcld 11281 . . . . . . . 8 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (𝑧 · (log‘((𝑛 + 1) / 𝑛))) ∈ ℂ)
3325nncnd 12282 . . . . . . . . . . 11 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
3425nnne0d 12316 . . . . . . . . . . 11 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 𝑛 ≠ 0)
3524, 33, 34divcld 12043 . . . . . . . . . 10 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (𝑧 / 𝑛) ∈ ℂ)
36 1cnd 11256 . . . . . . . . . 10 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 1 ∈ ℂ)
3735, 36addcld 11280 . . . . . . . . 9 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → ((𝑧 / 𝑛) + 1) ∈ ℂ)
384adantr 480 . . . . . . . . . 10 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
3938, 25dmgmdivn0 27071 . . . . . . . . 9 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → ((𝑧 / 𝑛) + 1) ≠ 0)
4037, 39logcld 26612 . . . . . . . 8 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (log‘((𝑧 / 𝑛) + 1)) ∈ ℂ)
4132, 40subcld 11620 . . . . . . 7 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) ∈ ℂ)
42 1z 12647 . . . . . . . . . . . 12 1 ∈ ℤ
43 seqfn 14054 . . . . . . . . . . . 12 (1 ∈ ℤ → seq1( ∘f + , 𝐺) Fn (ℤ‘1))
4442, 43ax-mp 5 . . . . . . . . . . 11 seq1( ∘f + , 𝐺) Fn (ℤ‘1)
459fneq2i 6666 . . . . . . . . . . 11 (seq1( ∘f + , 𝐺) Fn ℕ ↔ seq1( ∘f + , 𝐺) Fn (ℤ‘1))
4644, 45mpbir 231 . . . . . . . . . 10 seq1( ∘f + , 𝐺) Fn ℕ
47 lgamgulm.g . . . . . . . . . . . 12 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
481, 2, 47lgamgulm 27078 . . . . . . . . . . 11 (𝜑 → seq1( ∘f + , 𝐺) ∈ dom (⇝𝑢𝑈))
49 ulmdm 26436 . . . . . . . . . . 11 (seq1( ∘f + , 𝐺) ∈ dom (⇝𝑢𝑈) ↔ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)))
5048, 49sylib 218 . . . . . . . . . 10 (𝜑 → seq1( ∘f + , 𝐺)(⇝𝑢𝑈)((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)))
51 ulmf2 26427 . . . . . . . . . 10 ((seq1( ∘f + , 𝐺) Fn ℕ ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))) → seq1( ∘f + , 𝐺):ℕ⟶(ℂ ↑m 𝑈))
5246, 50, 51sylancr 587 . . . . . . . . 9 (𝜑 → seq1( ∘f + , 𝐺):ℕ⟶(ℂ ↑m 𝑈))
5352adantr 480 . . . . . . . 8 ((𝜑𝑧𝑈) → seq1( ∘f + , 𝐺):ℕ⟶(ℂ ↑m 𝑈))
54 simpr 484 . . . . . . . 8 ((𝜑𝑧𝑈) → 𝑧𝑈)
55 seqex 14044 . . . . . . . . 9 seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) ∈ V
5655a1i 11 . . . . . . . 8 ((𝜑𝑧𝑈) → seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) ∈ V)
5747a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))
5857seqeq3d 14050 . . . . . . . . . . . 12 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → seq1( ∘f + , 𝐺) = seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))))
5958fveq1d 6908 . . . . . . . . . . 11 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (seq1( ∘f + , 𝐺)‘𝑛) = (seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))‘𝑛))
60 cnex 11236 . . . . . . . . . . . . . . 15 ℂ ∈ V
612, 60rabex2 5341 . . . . . . . . . . . . . 14 𝑈 ∈ V
6261a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑈 ∈ V)
63 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
6463, 9eleqtrdi 2851 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
65 fz1ssnn 13595 . . . . . . . . . . . . . 14 (1...𝑛) ⊆ ℕ
6665a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (1...𝑛) ⊆ ℕ)
67 ovexd 7466 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ (𝑚 ∈ ℕ ∧ 𝑧𝑈)) → ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) ∈ V)
6862, 64, 66, 67seqof2 14101 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))‘𝑛) = (𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛)))
6968adantlr 715 . . . . . . . . . . 11 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))‘𝑛) = (𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛)))
7059, 69eqtrd 2777 . . . . . . . . . 10 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (seq1( ∘f + , 𝐺)‘𝑛) = (𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛)))
7170fveq1d 6908 . . . . . . . . 9 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → ((seq1( ∘f + , 𝐺)‘𝑛)‘𝑧) = ((𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛))‘𝑧))
7254adantr 480 . . . . . . . . . 10 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 𝑧𝑈)
73 fvex 6919 . . . . . . . . . 10 (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛) ∈ V
74 eqid 2737 . . . . . . . . . . 11 (𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛)) = (𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛))
7574fvmpt2 7027 . . . . . . . . . 10 ((𝑧𝑈 ∧ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛) ∈ V) → ((𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛))‘𝑧) = (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛))
7672, 73, 75sylancl 586 . . . . . . . . 9 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → ((𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛))‘𝑧) = (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛))
7771, 76eqtrd 2777 . . . . . . . 8 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → ((seq1( ∘f + , 𝐺)‘𝑛)‘𝑧) = (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛))
7850adantr 480 . . . . . . . 8 ((𝜑𝑧𝑈) → seq1( ∘f + , 𝐺)(⇝𝑢𝑈)((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)))
799, 10, 53, 54, 56, 77, 78ulmclm 26430 . . . . . . 7 ((𝜑𝑧𝑈) → seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) ⇝ (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))‘𝑧))
809, 10, 22, 41, 79isumclim 15793 . . . . . 6 ((𝜑𝑧𝑈) → Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) = (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))‘𝑧))
81 ulmcl 26424 . . . . . . . 8 (seq1( ∘f + , 𝐺)(⇝𝑢𝑈)((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)) → ((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)):𝑈⟶ℂ)
8250, 81syl 17 . . . . . . 7 (𝜑 → ((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)):𝑈⟶ℂ)
8382ffvelcdmda 7104 . . . . . 6 ((𝜑𝑧𝑈) → (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))‘𝑧) ∈ ℂ)
8480, 83eqeltrd 2841 . . . . 5 ((𝜑𝑧𝑈) → Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) ∈ ℂ)
854dmgmn0 27069 . . . . . 6 ((𝜑𝑧𝑈) → 𝑧 ≠ 0)
8623, 85logcld 26612 . . . . 5 ((𝜑𝑧𝑈) → (log‘𝑧) ∈ ℂ)
8784, 86subcld 11620 . . . 4 ((𝜑𝑧𝑈) → (Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) − (log‘𝑧)) ∈ ℂ)
888, 87eqeltrd 2841 . . 3 ((𝜑𝑧𝑈) → (log Γ‘𝑧) ∈ ℂ)
8988ralrimiva 3146 . 2 (𝜑 → ∀𝑧𝑈 (log Γ‘𝑧) ∈ ℂ)
90 ffn 6736 . . . . . 6 (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)):𝑈⟶ℂ → ((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)) Fn 𝑈)
9150, 81, 903syl 18 . . . . 5 (𝜑 → ((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)) Fn 𝑈)
92 nfcv 2905 . . . . . . 7 𝑧(⇝𝑢𝑈)
93 nfcv 2905 . . . . . . . 8 𝑧1
94 nfcv 2905 . . . . . . . 8 𝑧f +
95 nfcv 2905 . . . . . . . . . 10 𝑧
96 nfmpt1 5250 . . . . . . . . . 10 𝑧(𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))
9795, 96nfmpt 5249 . . . . . . . . 9 𝑧(𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
9847, 97nfcxfr 2903 . . . . . . . 8 𝑧𝐺
9993, 94, 98nfseq 14052 . . . . . . 7 𝑧seq1( ∘f + , 𝐺)
10092, 99nffv 6916 . . . . . 6 𝑧((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))
101100dffn5f 6980 . . . . 5 (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)) Fn 𝑈 ↔ ((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)) = (𝑧𝑈 ↦ (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))‘𝑧)))
10291, 101sylib 218 . . . 4 (𝜑 → ((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)) = (𝑧𝑈 ↦ (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))‘𝑧)))
1038oveq1d 7446 . . . . . 6 ((𝜑𝑧𝑈) → ((log Γ‘𝑧) + (log‘𝑧)) = ((Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) − (log‘𝑧)) + (log‘𝑧)))
10484, 86npcand 11624 . . . . . 6 ((𝜑𝑧𝑈) → ((Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) − (log‘𝑧)) + (log‘𝑧)) = Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))
105103, 104, 803eqtrrd 2782 . . . . 5 ((𝜑𝑧𝑈) → (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))‘𝑧) = ((log Γ‘𝑧) + (log‘𝑧)))
106105mpteq2dva 5242 . . . 4 (𝜑 → (𝑧𝑈 ↦ (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))‘𝑧)) = (𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))))
107102, 106eqtrd 2777 . . 3 (𝜑 → ((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)) = (𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))))
10850, 107breqtrd 5169 . 2 (𝜑 → seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))))
10989, 108jca 511 1 (𝜑 → (∀𝑧𝑈 (log Γ‘𝑧) ∈ ℂ ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  {crab 3436  Vcvv 3480  cdif 3948  wss 3951   class class class wbr 5143  cmpt 5225  dom cdm 5685   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  f cof 7695  m cmap 8866  cc 11153  1c1 11156   + caddc 11158   · cmul 11160  cle 11296  cmin 11492   / cdiv 11920  cn 12266  0cn0 12526  cz 12613  cuz 12878  ...cfz 13547  seqcseq 14042  abscabs 15273  Σcsu 15722  𝑢culm 26419  logclog 26596  log Γclgam 27059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-tan 16107  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-ulm 26420  df-log 26598  df-cxp 26599  df-lgam 27062
This theorem is referenced by:  lgambdd  27080  lgamcvglem  27083
  Copyright terms: Public domain W3C validator