MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamgulm2 Structured version   Visualization version   GIF version

Theorem lgamgulm2 26166
Description: Rewrite the limit of the sequence 𝐺 in terms of the log-Gamma function. (Contributed by Mario Carneiro, 6-Jul-2017.)
Hypotheses
Ref Expression
lgamgulm.r (𝜑𝑅 ∈ ℕ)
lgamgulm.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
lgamgulm.g 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
Assertion
Ref Expression
lgamgulm2 (𝜑 → (∀𝑧𝑈 (log Γ‘𝑧) ∈ ℂ ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))))
Distinct variable groups:   𝑘,𝑚,𝑥,𝑧,𝑅   𝑈,𝑚,𝑧   𝜑,𝑚,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑘)   𝑈(𝑥,𝑘)   𝐺(𝑥,𝑧,𝑘,𝑚)

Proof of Theorem lgamgulm2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 lgamgulm.r . . . . . . 7 (𝜑𝑅 ∈ ℕ)
2 lgamgulm.u . . . . . . 7 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
31, 2lgamgulmlem1 26159 . . . . . 6 (𝜑𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
43sselda 3925 . . . . 5 ((𝜑𝑧𝑈) → 𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
5 ovex 7301 . . . . 5 𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) − (log‘𝑧)) ∈ V
6 df-lgam 26149 . . . . . 6 log Γ = (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) − (log‘𝑧)))
76fvmpt2 6880 . . . . 5 ((𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ (Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) − (log‘𝑧)) ∈ V) → (log Γ‘𝑧) = (Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) − (log‘𝑧)))
84, 5, 7sylancl 585 . . . 4 ((𝜑𝑧𝑈) → (log Γ‘𝑧) = (Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) − (log‘𝑧)))
9 nnuz 12603 . . . . . . 7 ℕ = (ℤ‘1)
10 1zzd 12334 . . . . . . 7 ((𝜑𝑧𝑈) → 1 ∈ ℤ)
11 oveq1 7275 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1))
12 id 22 . . . . . . . . . . . . 13 (𝑚 = 𝑛𝑚 = 𝑛)
1311, 12oveq12d 7286 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝑚 + 1) / 𝑚) = ((𝑛 + 1) / 𝑛))
1413fveq2d 6772 . . . . . . . . . . 11 (𝑚 = 𝑛 → (log‘((𝑚 + 1) / 𝑚)) = (log‘((𝑛 + 1) / 𝑛)))
1514oveq2d 7284 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝑧 · (log‘((𝑚 + 1) / 𝑚))) = (𝑧 · (log‘((𝑛 + 1) / 𝑛))))
16 oveq2 7276 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑧 / 𝑚) = (𝑧 / 𝑛))
1716fvoveq1d 7290 . . . . . . . . . 10 (𝑚 = 𝑛 → (log‘((𝑧 / 𝑚) + 1)) = (log‘((𝑧 / 𝑛) + 1)))
1815, 17oveq12d 7286 . . . . . . . . 9 (𝑚 = 𝑛 → ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) = ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))
19 eqid 2739 . . . . . . . . 9 (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))) = (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))
20 ovex 7301 . . . . . . . . 9 ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) ∈ V
2118, 19, 20fvmpt 6869 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))‘𝑛) = ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))
2221adantl 481 . . . . . . 7 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))‘𝑛) = ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))
234eldifad 3903 . . . . . . . . . 10 ((𝜑𝑧𝑈) → 𝑧 ∈ ℂ)
2423adantr 480 . . . . . . . . 9 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 𝑧 ∈ ℂ)
25 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
2625peano2nnd 11973 . . . . . . . . . . . . 13 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
2726nnrpd 12752 . . . . . . . . . . . 12 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℝ+)
2825nnrpd 12752 . . . . . . . . . . . 12 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+)
2927, 28rpdivcld 12771 . . . . . . . . . . 11 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → ((𝑛 + 1) / 𝑛) ∈ ℝ+)
3029relogcld 25759 . . . . . . . . . 10 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (log‘((𝑛 + 1) / 𝑛)) ∈ ℝ)
3130recnd 10987 . . . . . . . . 9 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (log‘((𝑛 + 1) / 𝑛)) ∈ ℂ)
3224, 31mulcld 10979 . . . . . . . 8 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (𝑧 · (log‘((𝑛 + 1) / 𝑛))) ∈ ℂ)
3325nncnd 11972 . . . . . . . . . . 11 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
3425nnne0d 12006 . . . . . . . . . . 11 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 𝑛 ≠ 0)
3524, 33, 34divcld 11734 . . . . . . . . . 10 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (𝑧 / 𝑛) ∈ ℂ)
36 1cnd 10954 . . . . . . . . . 10 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 1 ∈ ℂ)
3735, 36addcld 10978 . . . . . . . . 9 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → ((𝑧 / 𝑛) + 1) ∈ ℂ)
384adantr 480 . . . . . . . . . 10 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
3938, 25dmgmdivn0 26158 . . . . . . . . 9 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → ((𝑧 / 𝑛) + 1) ≠ 0)
4037, 39logcld 25707 . . . . . . . 8 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (log‘((𝑧 / 𝑛) + 1)) ∈ ℂ)
4132, 40subcld 11315 . . . . . . 7 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) ∈ ℂ)
42 1z 12333 . . . . . . . . . . . 12 1 ∈ ℤ
43 seqfn 13714 . . . . . . . . . . . 12 (1 ∈ ℤ → seq1( ∘f + , 𝐺) Fn (ℤ‘1))
4442, 43ax-mp 5 . . . . . . . . . . 11 seq1( ∘f + , 𝐺) Fn (ℤ‘1)
459fneq2i 6527 . . . . . . . . . . 11 (seq1( ∘f + , 𝐺) Fn ℕ ↔ seq1( ∘f + , 𝐺) Fn (ℤ‘1))
4644, 45mpbir 230 . . . . . . . . . 10 seq1( ∘f + , 𝐺) Fn ℕ
47 lgamgulm.g . . . . . . . . . . . 12 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
481, 2, 47lgamgulm 26165 . . . . . . . . . . 11 (𝜑 → seq1( ∘f + , 𝐺) ∈ dom (⇝𝑢𝑈))
49 ulmdm 25533 . . . . . . . . . . 11 (seq1( ∘f + , 𝐺) ∈ dom (⇝𝑢𝑈) ↔ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)))
5048, 49sylib 217 . . . . . . . . . 10 (𝜑 → seq1( ∘f + , 𝐺)(⇝𝑢𝑈)((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)))
51 ulmf2 25524 . . . . . . . . . 10 ((seq1( ∘f + , 𝐺) Fn ℕ ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))) → seq1( ∘f + , 𝐺):ℕ⟶(ℂ ↑m 𝑈))
5246, 50, 51sylancr 586 . . . . . . . . 9 (𝜑 → seq1( ∘f + , 𝐺):ℕ⟶(ℂ ↑m 𝑈))
5352adantr 480 . . . . . . . 8 ((𝜑𝑧𝑈) → seq1( ∘f + , 𝐺):ℕ⟶(ℂ ↑m 𝑈))
54 simpr 484 . . . . . . . 8 ((𝜑𝑧𝑈) → 𝑧𝑈)
55 seqex 13704 . . . . . . . . 9 seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) ∈ V
5655a1i 11 . . . . . . . 8 ((𝜑𝑧𝑈) → seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) ∈ V)
5747a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))
5857seqeq3d 13710 . . . . . . . . . . . 12 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → seq1( ∘f + , 𝐺) = seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))))
5958fveq1d 6770 . . . . . . . . . . 11 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (seq1( ∘f + , 𝐺)‘𝑛) = (seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))‘𝑛))
60 cnex 10936 . . . . . . . . . . . . . . 15 ℂ ∈ V
612, 60rabex2 5261 . . . . . . . . . . . . . 14 𝑈 ∈ V
6261a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑈 ∈ V)
63 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
6463, 9eleqtrdi 2850 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
65 fz1ssnn 13269 . . . . . . . . . . . . . 14 (1...𝑛) ⊆ ℕ
6665a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (1...𝑛) ⊆ ℕ)
67 ovexd 7303 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ (𝑚 ∈ ℕ ∧ 𝑧𝑈)) → ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) ∈ V)
6862, 64, 66, 67seqof2 13762 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))‘𝑛) = (𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛)))
6968adantlr 711 . . . . . . . . . . 11 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))‘𝑛) = (𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛)))
7059, 69eqtrd 2779 . . . . . . . . . 10 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (seq1( ∘f + , 𝐺)‘𝑛) = (𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛)))
7170fveq1d 6770 . . . . . . . . 9 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → ((seq1( ∘f + , 𝐺)‘𝑛)‘𝑧) = ((𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛))‘𝑧))
7254adantr 480 . . . . . . . . . 10 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 𝑧𝑈)
73 fvex 6781 . . . . . . . . . 10 (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛) ∈ V
74 eqid 2739 . . . . . . . . . . 11 (𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛)) = (𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛))
7574fvmpt2 6880 . . . . . . . . . 10 ((𝑧𝑈 ∧ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛) ∈ V) → ((𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛))‘𝑧) = (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛))
7672, 73, 75sylancl 585 . . . . . . . . 9 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → ((𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛))‘𝑧) = (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛))
7771, 76eqtrd 2779 . . . . . . . 8 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → ((seq1( ∘f + , 𝐺)‘𝑛)‘𝑧) = (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛))
7850adantr 480 . . . . . . . 8 ((𝜑𝑧𝑈) → seq1( ∘f + , 𝐺)(⇝𝑢𝑈)((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)))
799, 10, 53, 54, 56, 77, 78ulmclm 25527 . . . . . . 7 ((𝜑𝑧𝑈) → seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) ⇝ (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))‘𝑧))
809, 10, 22, 41, 79isumclim 15450 . . . . . 6 ((𝜑𝑧𝑈) → Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) = (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))‘𝑧))
81 ulmcl 25521 . . . . . . . 8 (seq1( ∘f + , 𝐺)(⇝𝑢𝑈)((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)) → ((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)):𝑈⟶ℂ)
8250, 81syl 17 . . . . . . 7 (𝜑 → ((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)):𝑈⟶ℂ)
8382ffvelrnda 6955 . . . . . 6 ((𝜑𝑧𝑈) → (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))‘𝑧) ∈ ℂ)
8480, 83eqeltrd 2840 . . . . 5 ((𝜑𝑧𝑈) → Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) ∈ ℂ)
854dmgmn0 26156 . . . . . 6 ((𝜑𝑧𝑈) → 𝑧 ≠ 0)
8623, 85logcld 25707 . . . . 5 ((𝜑𝑧𝑈) → (log‘𝑧) ∈ ℂ)
8784, 86subcld 11315 . . . 4 ((𝜑𝑧𝑈) → (Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) − (log‘𝑧)) ∈ ℂ)
888, 87eqeltrd 2840 . . 3 ((𝜑𝑧𝑈) → (log Γ‘𝑧) ∈ ℂ)
8988ralrimiva 3109 . 2 (𝜑 → ∀𝑧𝑈 (log Γ‘𝑧) ∈ ℂ)
90 ffn 6596 . . . . . 6 (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)):𝑈⟶ℂ → ((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)) Fn 𝑈)
9150, 81, 903syl 18 . . . . 5 (𝜑 → ((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)) Fn 𝑈)
92 nfcv 2908 . . . . . . 7 𝑧(⇝𝑢𝑈)
93 nfcv 2908 . . . . . . . 8 𝑧1
94 nfcv 2908 . . . . . . . 8 𝑧f +
95 nfcv 2908 . . . . . . . . . 10 𝑧
96 nfmpt1 5186 . . . . . . . . . 10 𝑧(𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))
9795, 96nfmpt 5185 . . . . . . . . 9 𝑧(𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
9847, 97nfcxfr 2906 . . . . . . . 8 𝑧𝐺
9993, 94, 98nfseq 13712 . . . . . . 7 𝑧seq1( ∘f + , 𝐺)
10092, 99nffv 6778 . . . . . 6 𝑧((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))
101100dffn5f 6834 . . . . 5 (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)) Fn 𝑈 ↔ ((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)) = (𝑧𝑈 ↦ (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))‘𝑧)))
10291, 101sylib 217 . . . 4 (𝜑 → ((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)) = (𝑧𝑈 ↦ (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))‘𝑧)))
1038oveq1d 7283 . . . . . 6 ((𝜑𝑧𝑈) → ((log Γ‘𝑧) + (log‘𝑧)) = ((Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) − (log‘𝑧)) + (log‘𝑧)))
10484, 86npcand 11319 . . . . . 6 ((𝜑𝑧𝑈) → ((Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) − (log‘𝑧)) + (log‘𝑧)) = Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))
105103, 104, 803eqtrrd 2784 . . . . 5 ((𝜑𝑧𝑈) → (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))‘𝑧) = ((log Γ‘𝑧) + (log‘𝑧)))
106105mpteq2dva 5178 . . . 4 (𝜑 → (𝑧𝑈 ↦ (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))‘𝑧)) = (𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))))
107102, 106eqtrd 2779 . . 3 (𝜑 → ((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)) = (𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))))
10850, 107breqtrd 5104 . 2 (𝜑 → seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))))
10989, 108jca 511 1 (𝜑 → (∀𝑧𝑈 (log Γ‘𝑧) ∈ ℂ ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  wral 3065  {crab 3069  Vcvv 3430  cdif 3888  wss 3891   class class class wbr 5078  cmpt 5161  dom cdm 5588   Fn wfn 6425  wf 6426  cfv 6430  (class class class)co 7268  f cof 7522  m cmap 8589  cc 10853  1c1 10856   + caddc 10858   · cmul 10860  cle 10994  cmin 11188   / cdiv 11615  cn 11956  0cn0 12216  cz 12302  cuz 12564  ...cfz 13221  seqcseq 13702  abscabs 14926  Σcsu 15378  𝑢culm 25516  logclog 25691  log Γclgam 26146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-inf2 9360  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933  ax-addf 10934  ax-mulf 10935
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-iin 4932  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-om 7701  df-1st 7817  df-2nd 7818  df-supp 7962  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-2o 8282  df-oadd 8285  df-er 8472  df-map 8591  df-pm 8592  df-ixp 8660  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-fsupp 9090  df-fi 9131  df-sup 9162  df-inf 9163  df-oi 9230  df-dju 9643  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-z 12303  df-dec 12420  df-uz 12565  df-q 12671  df-rp 12713  df-xneg 12830  df-xadd 12831  df-xmul 12832  df-ioo 13065  df-ioc 13066  df-ico 13067  df-icc 13068  df-fz 13222  df-fzo 13365  df-fl 13493  df-mod 13571  df-seq 13703  df-exp 13764  df-fac 13969  df-bc 13998  df-hash 14026  df-shft 14759  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-limsup 15161  df-clim 15178  df-rlim 15179  df-sum 15379  df-ef 15758  df-sin 15760  df-cos 15761  df-tan 15762  df-pi 15763  df-struct 16829  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923  df-plusg 16956  df-mulr 16957  df-starv 16958  df-sca 16959  df-vsca 16960  df-ip 16961  df-tset 16962  df-ple 16963  df-ds 16965  df-unif 16966  df-hom 16967  df-cco 16968  df-rest 17114  df-topn 17115  df-0g 17133  df-gsum 17134  df-topgen 17135  df-pt 17136  df-prds 17139  df-xrs 17194  df-qtop 17199  df-imas 17200  df-xps 17202  df-mre 17276  df-mrc 17277  df-acs 17279  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-submnd 18412  df-mulg 18682  df-cntz 18904  df-cmn 19369  df-psmet 20570  df-xmet 20571  df-met 20572  df-bl 20573  df-mopn 20574  df-fbas 20575  df-fg 20576  df-cnfld 20579  df-top 22024  df-topon 22041  df-topsp 22063  df-bases 22077  df-cld 22151  df-ntr 22152  df-cls 22153  df-nei 22230  df-lp 22268  df-perf 22269  df-cn 22359  df-cnp 22360  df-haus 22447  df-cmp 22519  df-tx 22694  df-hmeo 22887  df-fil 22978  df-fm 23070  df-flim 23071  df-flf 23072  df-xms 23454  df-ms 23455  df-tms 23456  df-cncf 24022  df-limc 25011  df-dv 25012  df-ulm 25517  df-log 25693  df-cxp 25694  df-lgam 26149
This theorem is referenced by:  lgambdd  26167  lgamcvglem  26170
  Copyright terms: Public domain W3C validator