MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamgulm2 Structured version   Visualization version   GIF version

Theorem lgamgulm2 26946
Description: Rewrite the limit of the sequence 𝐺 in terms of the log-Gamma function. (Contributed by Mario Carneiro, 6-Jul-2017.)
Hypotheses
Ref Expression
lgamgulm.r (𝜑𝑅 ∈ ℕ)
lgamgulm.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
lgamgulm.g 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
Assertion
Ref Expression
lgamgulm2 (𝜑 → (∀𝑧𝑈 (log Γ‘𝑧) ∈ ℂ ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))))
Distinct variable groups:   𝑘,𝑚,𝑥,𝑧,𝑅   𝑈,𝑚,𝑧   𝜑,𝑚,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑘)   𝑈(𝑥,𝑘)   𝐺(𝑥,𝑧,𝑘,𝑚)

Proof of Theorem lgamgulm2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 lgamgulm.r . . . . . . 7 (𝜑𝑅 ∈ ℕ)
2 lgamgulm.u . . . . . . 7 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
31, 2lgamgulmlem1 26939 . . . . . 6 (𝜑𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
43sselda 3946 . . . . 5 ((𝜑𝑧𝑈) → 𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
5 ovex 7420 . . . . 5 𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) − (log‘𝑧)) ∈ V
6 df-lgam 26929 . . . . . 6 log Γ = (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) − (log‘𝑧)))
76fvmpt2 6979 . . . . 5 ((𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ (Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) − (log‘𝑧)) ∈ V) → (log Γ‘𝑧) = (Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) − (log‘𝑧)))
84, 5, 7sylancl 586 . . . 4 ((𝜑𝑧𝑈) → (log Γ‘𝑧) = (Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) − (log‘𝑧)))
9 nnuz 12836 . . . . . . 7 ℕ = (ℤ‘1)
10 1zzd 12564 . . . . . . 7 ((𝜑𝑧𝑈) → 1 ∈ ℤ)
11 oveq1 7394 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1))
12 id 22 . . . . . . . . . . . . 13 (𝑚 = 𝑛𝑚 = 𝑛)
1311, 12oveq12d 7405 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝑚 + 1) / 𝑚) = ((𝑛 + 1) / 𝑛))
1413fveq2d 6862 . . . . . . . . . . 11 (𝑚 = 𝑛 → (log‘((𝑚 + 1) / 𝑚)) = (log‘((𝑛 + 1) / 𝑛)))
1514oveq2d 7403 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝑧 · (log‘((𝑚 + 1) / 𝑚))) = (𝑧 · (log‘((𝑛 + 1) / 𝑛))))
16 oveq2 7395 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑧 / 𝑚) = (𝑧 / 𝑛))
1716fvoveq1d 7409 . . . . . . . . . 10 (𝑚 = 𝑛 → (log‘((𝑧 / 𝑚) + 1)) = (log‘((𝑧 / 𝑛) + 1)))
1815, 17oveq12d 7405 . . . . . . . . 9 (𝑚 = 𝑛 → ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) = ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))
19 eqid 2729 . . . . . . . . 9 (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))) = (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))
20 ovex 7420 . . . . . . . . 9 ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) ∈ V
2118, 19, 20fvmpt 6968 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))‘𝑛) = ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))
2221adantl 481 . . . . . . 7 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))‘𝑛) = ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))
234eldifad 3926 . . . . . . . . . 10 ((𝜑𝑧𝑈) → 𝑧 ∈ ℂ)
2423adantr 480 . . . . . . . . 9 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 𝑧 ∈ ℂ)
25 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
2625peano2nnd 12203 . . . . . . . . . . . . 13 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
2726nnrpd 12993 . . . . . . . . . . . 12 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℝ+)
2825nnrpd 12993 . . . . . . . . . . . 12 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+)
2927, 28rpdivcld 13012 . . . . . . . . . . 11 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → ((𝑛 + 1) / 𝑛) ∈ ℝ+)
3029relogcld 26532 . . . . . . . . . 10 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (log‘((𝑛 + 1) / 𝑛)) ∈ ℝ)
3130recnd 11202 . . . . . . . . 9 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (log‘((𝑛 + 1) / 𝑛)) ∈ ℂ)
3224, 31mulcld 11194 . . . . . . . 8 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (𝑧 · (log‘((𝑛 + 1) / 𝑛))) ∈ ℂ)
3325nncnd 12202 . . . . . . . . . . 11 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
3425nnne0d 12236 . . . . . . . . . . 11 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 𝑛 ≠ 0)
3524, 33, 34divcld 11958 . . . . . . . . . 10 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (𝑧 / 𝑛) ∈ ℂ)
36 1cnd 11169 . . . . . . . . . 10 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 1 ∈ ℂ)
3735, 36addcld 11193 . . . . . . . . 9 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → ((𝑧 / 𝑛) + 1) ∈ ℂ)
384adantr 480 . . . . . . . . . 10 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
3938, 25dmgmdivn0 26938 . . . . . . . . 9 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → ((𝑧 / 𝑛) + 1) ≠ 0)
4037, 39logcld 26479 . . . . . . . 8 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (log‘((𝑧 / 𝑛) + 1)) ∈ ℂ)
4132, 40subcld 11533 . . . . . . 7 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) ∈ ℂ)
42 1z 12563 . . . . . . . . . . . 12 1 ∈ ℤ
43 seqfn 13978 . . . . . . . . . . . 12 (1 ∈ ℤ → seq1( ∘f + , 𝐺) Fn (ℤ‘1))
4442, 43ax-mp 5 . . . . . . . . . . 11 seq1( ∘f + , 𝐺) Fn (ℤ‘1)
459fneq2i 6616 . . . . . . . . . . 11 (seq1( ∘f + , 𝐺) Fn ℕ ↔ seq1( ∘f + , 𝐺) Fn (ℤ‘1))
4644, 45mpbir 231 . . . . . . . . . 10 seq1( ∘f + , 𝐺) Fn ℕ
47 lgamgulm.g . . . . . . . . . . . 12 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
481, 2, 47lgamgulm 26945 . . . . . . . . . . 11 (𝜑 → seq1( ∘f + , 𝐺) ∈ dom (⇝𝑢𝑈))
49 ulmdm 26302 . . . . . . . . . . 11 (seq1( ∘f + , 𝐺) ∈ dom (⇝𝑢𝑈) ↔ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)))
5048, 49sylib 218 . . . . . . . . . 10 (𝜑 → seq1( ∘f + , 𝐺)(⇝𝑢𝑈)((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)))
51 ulmf2 26293 . . . . . . . . . 10 ((seq1( ∘f + , 𝐺) Fn ℕ ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))) → seq1( ∘f + , 𝐺):ℕ⟶(ℂ ↑m 𝑈))
5246, 50, 51sylancr 587 . . . . . . . . 9 (𝜑 → seq1( ∘f + , 𝐺):ℕ⟶(ℂ ↑m 𝑈))
5352adantr 480 . . . . . . . 8 ((𝜑𝑧𝑈) → seq1( ∘f + , 𝐺):ℕ⟶(ℂ ↑m 𝑈))
54 simpr 484 . . . . . . . 8 ((𝜑𝑧𝑈) → 𝑧𝑈)
55 seqex 13968 . . . . . . . . 9 seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) ∈ V
5655a1i 11 . . . . . . . 8 ((𝜑𝑧𝑈) → seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) ∈ V)
5747a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))
5857seqeq3d 13974 . . . . . . . . . . . 12 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → seq1( ∘f + , 𝐺) = seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))))
5958fveq1d 6860 . . . . . . . . . . 11 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (seq1( ∘f + , 𝐺)‘𝑛) = (seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))‘𝑛))
60 cnex 11149 . . . . . . . . . . . . . . 15 ℂ ∈ V
612, 60rabex2 5296 . . . . . . . . . . . . . 14 𝑈 ∈ V
6261a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑈 ∈ V)
63 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
6463, 9eleqtrdi 2838 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
65 fz1ssnn 13516 . . . . . . . . . . . . . 14 (1...𝑛) ⊆ ℕ
6665a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (1...𝑛) ⊆ ℕ)
67 ovexd 7422 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ (𝑚 ∈ ℕ ∧ 𝑧𝑈)) → ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) ∈ V)
6862, 64, 66, 67seqof2 14025 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))‘𝑛) = (𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛)))
6968adantlr 715 . . . . . . . . . . 11 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))‘𝑛) = (𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛)))
7059, 69eqtrd 2764 . . . . . . . . . 10 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (seq1( ∘f + , 𝐺)‘𝑛) = (𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛)))
7170fveq1d 6860 . . . . . . . . 9 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → ((seq1( ∘f + , 𝐺)‘𝑛)‘𝑧) = ((𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛))‘𝑧))
7254adantr 480 . . . . . . . . . 10 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 𝑧𝑈)
73 fvex 6871 . . . . . . . . . 10 (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛) ∈ V
74 eqid 2729 . . . . . . . . . . 11 (𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛)) = (𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛))
7574fvmpt2 6979 . . . . . . . . . 10 ((𝑧𝑈 ∧ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛) ∈ V) → ((𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛))‘𝑧) = (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛))
7672, 73, 75sylancl 586 . . . . . . . . 9 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → ((𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛))‘𝑧) = (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛))
7771, 76eqtrd 2764 . . . . . . . 8 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → ((seq1( ∘f + , 𝐺)‘𝑛)‘𝑧) = (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛))
7850adantr 480 . . . . . . . 8 ((𝜑𝑧𝑈) → seq1( ∘f + , 𝐺)(⇝𝑢𝑈)((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)))
799, 10, 53, 54, 56, 77, 78ulmclm 26296 . . . . . . 7 ((𝜑𝑧𝑈) → seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) ⇝ (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))‘𝑧))
809, 10, 22, 41, 79isumclim 15723 . . . . . 6 ((𝜑𝑧𝑈) → Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) = (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))‘𝑧))
81 ulmcl 26290 . . . . . . . 8 (seq1( ∘f + , 𝐺)(⇝𝑢𝑈)((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)) → ((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)):𝑈⟶ℂ)
8250, 81syl 17 . . . . . . 7 (𝜑 → ((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)):𝑈⟶ℂ)
8382ffvelcdmda 7056 . . . . . 6 ((𝜑𝑧𝑈) → (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))‘𝑧) ∈ ℂ)
8480, 83eqeltrd 2828 . . . . 5 ((𝜑𝑧𝑈) → Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) ∈ ℂ)
854dmgmn0 26936 . . . . . 6 ((𝜑𝑧𝑈) → 𝑧 ≠ 0)
8623, 85logcld 26479 . . . . 5 ((𝜑𝑧𝑈) → (log‘𝑧) ∈ ℂ)
8784, 86subcld 11533 . . . 4 ((𝜑𝑧𝑈) → (Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) − (log‘𝑧)) ∈ ℂ)
888, 87eqeltrd 2828 . . 3 ((𝜑𝑧𝑈) → (log Γ‘𝑧) ∈ ℂ)
8988ralrimiva 3125 . 2 (𝜑 → ∀𝑧𝑈 (log Γ‘𝑧) ∈ ℂ)
90 ffn 6688 . . . . . 6 (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)):𝑈⟶ℂ → ((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)) Fn 𝑈)
9150, 81, 903syl 18 . . . . 5 (𝜑 → ((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)) Fn 𝑈)
92 nfcv 2891 . . . . . . 7 𝑧(⇝𝑢𝑈)
93 nfcv 2891 . . . . . . . 8 𝑧1
94 nfcv 2891 . . . . . . . 8 𝑧f +
95 nfcv 2891 . . . . . . . . . 10 𝑧
96 nfmpt1 5206 . . . . . . . . . 10 𝑧(𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))
9795, 96nfmpt 5205 . . . . . . . . 9 𝑧(𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
9847, 97nfcxfr 2889 . . . . . . . 8 𝑧𝐺
9993, 94, 98nfseq 13976 . . . . . . 7 𝑧seq1( ∘f + , 𝐺)
10092, 99nffv 6868 . . . . . 6 𝑧((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))
101100dffn5f 6932 . . . . 5 (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)) Fn 𝑈 ↔ ((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)) = (𝑧𝑈 ↦ (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))‘𝑧)))
10291, 101sylib 218 . . . 4 (𝜑 → ((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)) = (𝑧𝑈 ↦ (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))‘𝑧)))
1038oveq1d 7402 . . . . . 6 ((𝜑𝑧𝑈) → ((log Γ‘𝑧) + (log‘𝑧)) = ((Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) − (log‘𝑧)) + (log‘𝑧)))
10484, 86npcand 11537 . . . . . 6 ((𝜑𝑧𝑈) → ((Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) − (log‘𝑧)) + (log‘𝑧)) = Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))
105103, 104, 803eqtrrd 2769 . . . . 5 ((𝜑𝑧𝑈) → (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))‘𝑧) = ((log Γ‘𝑧) + (log‘𝑧)))
106105mpteq2dva 5200 . . . 4 (𝜑 → (𝑧𝑈 ↦ (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))‘𝑧)) = (𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))))
107102, 106eqtrd 2764 . . 3 (𝜑 → ((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)) = (𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))))
10850, 107breqtrd 5133 . 2 (𝜑 → seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))))
10989, 108jca 511 1 (𝜑 → (∀𝑧𝑈 (log Γ‘𝑧) ∈ ℂ ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3405  Vcvv 3447  cdif 3911  wss 3914   class class class wbr 5107  cmpt 5188  dom cdm 5638   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651  m cmap 8799  cc 11066  1c1 11069   + caddc 11071   · cmul 11073  cle 11209  cmin 11405   / cdiv 11835  cn 12186  0cn0 12442  cz 12529  cuz 12793  ...cfz 13468  seqcseq 13966  abscabs 15200  Σcsu 15652  𝑢culm 26285  logclog 26463  log Γclgam 26926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-tan 16037  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-ulm 26286  df-log 26465  df-cxp 26466  df-lgam 26929
This theorem is referenced by:  lgambdd  26947  lgamcvglem  26950
  Copyright terms: Public domain W3C validator