MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamgulm2 Structured version   Visualization version   GIF version

Theorem lgamgulm2 26962
Description: Rewrite the limit of the sequence 𝐺 in terms of the log-Gamma function. (Contributed by Mario Carneiro, 6-Jul-2017.)
Hypotheses
Ref Expression
lgamgulm.r (𝜑𝑅 ∈ ℕ)
lgamgulm.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
lgamgulm.g 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
Assertion
Ref Expression
lgamgulm2 (𝜑 → (∀𝑧𝑈 (log Γ‘𝑧) ∈ ℂ ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))))
Distinct variable groups:   𝑘,𝑚,𝑥,𝑧,𝑅   𝑈,𝑚,𝑧   𝜑,𝑚,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑘)   𝑈(𝑥,𝑘)   𝐺(𝑥,𝑧,𝑘,𝑚)

Proof of Theorem lgamgulm2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 lgamgulm.r . . . . . . 7 (𝜑𝑅 ∈ ℕ)
2 lgamgulm.u . . . . . . 7 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
31, 2lgamgulmlem1 26955 . . . . . 6 (𝜑𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
43sselda 3937 . . . . 5 ((𝜑𝑧𝑈) → 𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
5 ovex 7386 . . . . 5 𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) − (log‘𝑧)) ∈ V
6 df-lgam 26945 . . . . . 6 log Γ = (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) − (log‘𝑧)))
76fvmpt2 6945 . . . . 5 ((𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ (Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) − (log‘𝑧)) ∈ V) → (log Γ‘𝑧) = (Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) − (log‘𝑧)))
84, 5, 7sylancl 586 . . . 4 ((𝜑𝑧𝑈) → (log Γ‘𝑧) = (Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) − (log‘𝑧)))
9 nnuz 12796 . . . . . . 7 ℕ = (ℤ‘1)
10 1zzd 12524 . . . . . . 7 ((𝜑𝑧𝑈) → 1 ∈ ℤ)
11 oveq1 7360 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1))
12 id 22 . . . . . . . . . . . . 13 (𝑚 = 𝑛𝑚 = 𝑛)
1311, 12oveq12d 7371 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝑚 + 1) / 𝑚) = ((𝑛 + 1) / 𝑛))
1413fveq2d 6830 . . . . . . . . . . 11 (𝑚 = 𝑛 → (log‘((𝑚 + 1) / 𝑚)) = (log‘((𝑛 + 1) / 𝑛)))
1514oveq2d 7369 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝑧 · (log‘((𝑚 + 1) / 𝑚))) = (𝑧 · (log‘((𝑛 + 1) / 𝑛))))
16 oveq2 7361 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑧 / 𝑚) = (𝑧 / 𝑛))
1716fvoveq1d 7375 . . . . . . . . . 10 (𝑚 = 𝑛 → (log‘((𝑧 / 𝑚) + 1)) = (log‘((𝑧 / 𝑛) + 1)))
1815, 17oveq12d 7371 . . . . . . . . 9 (𝑚 = 𝑛 → ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) = ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))
19 eqid 2729 . . . . . . . . 9 (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))) = (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))
20 ovex 7386 . . . . . . . . 9 ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) ∈ V
2118, 19, 20fvmpt 6934 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))‘𝑛) = ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))
2221adantl 481 . . . . . . 7 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))‘𝑛) = ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))
234eldifad 3917 . . . . . . . . . 10 ((𝜑𝑧𝑈) → 𝑧 ∈ ℂ)
2423adantr 480 . . . . . . . . 9 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 𝑧 ∈ ℂ)
25 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
2625peano2nnd 12163 . . . . . . . . . . . . 13 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
2726nnrpd 12953 . . . . . . . . . . . 12 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℝ+)
2825nnrpd 12953 . . . . . . . . . . . 12 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+)
2927, 28rpdivcld 12972 . . . . . . . . . . 11 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → ((𝑛 + 1) / 𝑛) ∈ ℝ+)
3029relogcld 26548 . . . . . . . . . 10 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (log‘((𝑛 + 1) / 𝑛)) ∈ ℝ)
3130recnd 11162 . . . . . . . . 9 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (log‘((𝑛 + 1) / 𝑛)) ∈ ℂ)
3224, 31mulcld 11154 . . . . . . . 8 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (𝑧 · (log‘((𝑛 + 1) / 𝑛))) ∈ ℂ)
3325nncnd 12162 . . . . . . . . . . 11 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
3425nnne0d 12196 . . . . . . . . . . 11 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 𝑛 ≠ 0)
3524, 33, 34divcld 11918 . . . . . . . . . 10 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (𝑧 / 𝑛) ∈ ℂ)
36 1cnd 11129 . . . . . . . . . 10 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 1 ∈ ℂ)
3735, 36addcld 11153 . . . . . . . . 9 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → ((𝑧 / 𝑛) + 1) ∈ ℂ)
384adantr 480 . . . . . . . . . 10 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
3938, 25dmgmdivn0 26954 . . . . . . . . 9 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → ((𝑧 / 𝑛) + 1) ≠ 0)
4037, 39logcld 26495 . . . . . . . 8 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (log‘((𝑧 / 𝑛) + 1)) ∈ ℂ)
4132, 40subcld 11493 . . . . . . 7 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) ∈ ℂ)
42 1z 12523 . . . . . . . . . . . 12 1 ∈ ℤ
43 seqfn 13938 . . . . . . . . . . . 12 (1 ∈ ℤ → seq1( ∘f + , 𝐺) Fn (ℤ‘1))
4442, 43ax-mp 5 . . . . . . . . . . 11 seq1( ∘f + , 𝐺) Fn (ℤ‘1)
459fneq2i 6584 . . . . . . . . . . 11 (seq1( ∘f + , 𝐺) Fn ℕ ↔ seq1( ∘f + , 𝐺) Fn (ℤ‘1))
4644, 45mpbir 231 . . . . . . . . . 10 seq1( ∘f + , 𝐺) Fn ℕ
47 lgamgulm.g . . . . . . . . . . . 12 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
481, 2, 47lgamgulm 26961 . . . . . . . . . . 11 (𝜑 → seq1( ∘f + , 𝐺) ∈ dom (⇝𝑢𝑈))
49 ulmdm 26318 . . . . . . . . . . 11 (seq1( ∘f + , 𝐺) ∈ dom (⇝𝑢𝑈) ↔ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)))
5048, 49sylib 218 . . . . . . . . . 10 (𝜑 → seq1( ∘f + , 𝐺)(⇝𝑢𝑈)((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)))
51 ulmf2 26309 . . . . . . . . . 10 ((seq1( ∘f + , 𝐺) Fn ℕ ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))) → seq1( ∘f + , 𝐺):ℕ⟶(ℂ ↑m 𝑈))
5246, 50, 51sylancr 587 . . . . . . . . 9 (𝜑 → seq1( ∘f + , 𝐺):ℕ⟶(ℂ ↑m 𝑈))
5352adantr 480 . . . . . . . 8 ((𝜑𝑧𝑈) → seq1( ∘f + , 𝐺):ℕ⟶(ℂ ↑m 𝑈))
54 simpr 484 . . . . . . . 8 ((𝜑𝑧𝑈) → 𝑧𝑈)
55 seqex 13928 . . . . . . . . 9 seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) ∈ V
5655a1i 11 . . . . . . . 8 ((𝜑𝑧𝑈) → seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) ∈ V)
5747a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))
5857seqeq3d 13934 . . . . . . . . . . . 12 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → seq1( ∘f + , 𝐺) = seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))))
5958fveq1d 6828 . . . . . . . . . . 11 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (seq1( ∘f + , 𝐺)‘𝑛) = (seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))‘𝑛))
60 cnex 11109 . . . . . . . . . . . . . . 15 ℂ ∈ V
612, 60rabex2 5283 . . . . . . . . . . . . . 14 𝑈 ∈ V
6261a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑈 ∈ V)
63 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
6463, 9eleqtrdi 2838 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
65 fz1ssnn 13476 . . . . . . . . . . . . . 14 (1...𝑛) ⊆ ℕ
6665a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (1...𝑛) ⊆ ℕ)
67 ovexd 7388 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ (𝑚 ∈ ℕ ∧ 𝑧𝑈)) → ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) ∈ V)
6862, 64, 66, 67seqof2 13985 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))‘𝑛) = (𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛)))
6968adantlr 715 . . . . . . . . . . 11 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))‘𝑛) = (𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛)))
7059, 69eqtrd 2764 . . . . . . . . . 10 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → (seq1( ∘f + , 𝐺)‘𝑛) = (𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛)))
7170fveq1d 6828 . . . . . . . . 9 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → ((seq1( ∘f + , 𝐺)‘𝑛)‘𝑧) = ((𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛))‘𝑧))
7254adantr 480 . . . . . . . . . 10 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → 𝑧𝑈)
73 fvex 6839 . . . . . . . . . 10 (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛) ∈ V
74 eqid 2729 . . . . . . . . . . 11 (𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛)) = (𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛))
7574fvmpt2 6945 . . . . . . . . . 10 ((𝑧𝑈 ∧ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛) ∈ V) → ((𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛))‘𝑧) = (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛))
7672, 73, 75sylancl 586 . . . . . . . . 9 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → ((𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛))‘𝑧) = (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛))
7771, 76eqtrd 2764 . . . . . . . 8 (((𝜑𝑧𝑈) ∧ 𝑛 ∈ ℕ) → ((seq1( ∘f + , 𝐺)‘𝑛)‘𝑧) = (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛))
7850adantr 480 . . . . . . . 8 ((𝜑𝑧𝑈) → seq1( ∘f + , 𝐺)(⇝𝑢𝑈)((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)))
799, 10, 53, 54, 56, 77, 78ulmclm 26312 . . . . . . 7 ((𝜑𝑧𝑈) → seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) ⇝ (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))‘𝑧))
809, 10, 22, 41, 79isumclim 15682 . . . . . 6 ((𝜑𝑧𝑈) → Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) = (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))‘𝑧))
81 ulmcl 26306 . . . . . . . 8 (seq1( ∘f + , 𝐺)(⇝𝑢𝑈)((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)) → ((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)):𝑈⟶ℂ)
8250, 81syl 17 . . . . . . 7 (𝜑 → ((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)):𝑈⟶ℂ)
8382ffvelcdmda 7022 . . . . . 6 ((𝜑𝑧𝑈) → (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))‘𝑧) ∈ ℂ)
8480, 83eqeltrd 2828 . . . . 5 ((𝜑𝑧𝑈) → Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) ∈ ℂ)
854dmgmn0 26952 . . . . . 6 ((𝜑𝑧𝑈) → 𝑧 ≠ 0)
8623, 85logcld 26495 . . . . 5 ((𝜑𝑧𝑈) → (log‘𝑧) ∈ ℂ)
8784, 86subcld 11493 . . . 4 ((𝜑𝑧𝑈) → (Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) − (log‘𝑧)) ∈ ℂ)
888, 87eqeltrd 2828 . . 3 ((𝜑𝑧𝑈) → (log Γ‘𝑧) ∈ ℂ)
8988ralrimiva 3121 . 2 (𝜑 → ∀𝑧𝑈 (log Γ‘𝑧) ∈ ℂ)
90 ffn 6656 . . . . . 6 (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)):𝑈⟶ℂ → ((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)) Fn 𝑈)
9150, 81, 903syl 18 . . . . 5 (𝜑 → ((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)) Fn 𝑈)
92 nfcv 2891 . . . . . . 7 𝑧(⇝𝑢𝑈)
93 nfcv 2891 . . . . . . . 8 𝑧1
94 nfcv 2891 . . . . . . . 8 𝑧f +
95 nfcv 2891 . . . . . . . . . 10 𝑧
96 nfmpt1 5194 . . . . . . . . . 10 𝑧(𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))
9795, 96nfmpt 5193 . . . . . . . . 9 𝑧(𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
9847, 97nfcxfr 2889 . . . . . . . 8 𝑧𝐺
9993, 94, 98nfseq 13936 . . . . . . 7 𝑧seq1( ∘f + , 𝐺)
10092, 99nffv 6836 . . . . . 6 𝑧((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))
101100dffn5f 6898 . . . . 5 (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)) Fn 𝑈 ↔ ((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)) = (𝑧𝑈 ↦ (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))‘𝑧)))
10291, 101sylib 218 . . . 4 (𝜑 → ((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)) = (𝑧𝑈 ↦ (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))‘𝑧)))
1038oveq1d 7368 . . . . . 6 ((𝜑𝑧𝑈) → ((log Γ‘𝑧) + (log‘𝑧)) = ((Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) − (log‘𝑧)) + (log‘𝑧)))
10484, 86npcand 11497 . . . . . 6 ((𝜑𝑧𝑈) → ((Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))) − (log‘𝑧)) + (log‘𝑧)) = Σ𝑛 ∈ ℕ ((𝑧 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝑧 / 𝑛) + 1))))
105103, 104, 803eqtrrd 2769 . . . . 5 ((𝜑𝑧𝑈) → (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))‘𝑧) = ((log Γ‘𝑧) + (log‘𝑧)))
106105mpteq2dva 5188 . . . 4 (𝜑 → (𝑧𝑈 ↦ (((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺))‘𝑧)) = (𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))))
107102, 106eqtrd 2764 . . 3 (𝜑 → ((⇝𝑢𝑈)‘seq1( ∘f + , 𝐺)) = (𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))))
10850, 107breqtrd 5121 . 2 (𝜑 → seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))))
10989, 108jca 511 1 (𝜑 → (∀𝑧𝑈 (log Γ‘𝑧) ∈ ℂ ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3396  Vcvv 3438  cdif 3902  wss 3905   class class class wbr 5095  cmpt 5176  dom cdm 5623   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  f cof 7615  m cmap 8760  cc 11026  1c1 11029   + caddc 11031   · cmul 11033  cle 11169  cmin 11365   / cdiv 11795  cn 12146  0cn0 12402  cz 12489  cuz 12753  ...cfz 13428  seqcseq 13926  abscabs 15159  Σcsu 15611  𝑢culm 26301  logclog 26479  log Γclgam 26942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-sin 15994  df-cos 15995  df-tan 15996  df-pi 15997  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-cmp 23290  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784  df-ulm 26302  df-log 26481  df-cxp 26482  df-lgam 26945
This theorem is referenced by:  lgambdd  26963  lgamcvglem  26966
  Copyright terms: Public domain W3C validator