Detailed syntax breakdown of Definition df-limc
| Step | Hyp | Ref
| Expression |
| 1 | | climc 25897 |
. 2
class
limℂ |
| 2 | | vf |
. . 3
setvar 𝑓 |
| 3 | | vx |
. . 3
setvar 𝑥 |
| 4 | | cc 11153 |
. . . 4
class
ℂ |
| 5 | | cpm 8867 |
. . . 4
class
↑pm |
| 6 | 4, 4, 5 | co 7431 |
. . 3
class (ℂ
↑pm ℂ) |
| 7 | | vz |
. . . . . . 7
setvar 𝑧 |
| 8 | 2 | cv 1539 |
. . . . . . . . 9
class 𝑓 |
| 9 | 8 | cdm 5685 |
. . . . . . . 8
class dom 𝑓 |
| 10 | 3 | cv 1539 |
. . . . . . . . 9
class 𝑥 |
| 11 | 10 | csn 4626 |
. . . . . . . 8
class {𝑥} |
| 12 | 9, 11 | cun 3949 |
. . . . . . 7
class (dom
𝑓 ∪ {𝑥}) |
| 13 | 7, 3 | weq 1962 |
. . . . . . . 8
wff 𝑧 = 𝑥 |
| 14 | | vy |
. . . . . . . . 9
setvar 𝑦 |
| 15 | 14 | cv 1539 |
. . . . . . . 8
class 𝑦 |
| 16 | 7 | cv 1539 |
. . . . . . . . 9
class 𝑧 |
| 17 | 16, 8 | cfv 6561 |
. . . . . . . 8
class (𝑓‘𝑧) |
| 18 | 13, 15, 17 | cif 4525 |
. . . . . . 7
class if(𝑧 = 𝑥, 𝑦, (𝑓‘𝑧)) |
| 19 | 7, 12, 18 | cmpt 5225 |
. . . . . 6
class (𝑧 ∈ (dom 𝑓 ∪ {𝑥}) ↦ if(𝑧 = 𝑥, 𝑦, (𝑓‘𝑧))) |
| 20 | | vj |
. . . . . . . . . 10
setvar 𝑗 |
| 21 | 20 | cv 1539 |
. . . . . . . . 9
class 𝑗 |
| 22 | | crest 17465 |
. . . . . . . . 9
class
↾t |
| 23 | 21, 12, 22 | co 7431 |
. . . . . . . 8
class (𝑗 ↾t (dom 𝑓 ∪ {𝑥})) |
| 24 | | ccnp 23233 |
. . . . . . . 8
class
CnP |
| 25 | 23, 21, 24 | co 7431 |
. . . . . . 7
class ((𝑗 ↾t (dom 𝑓 ∪ {𝑥})) CnP 𝑗) |
| 26 | 10, 25 | cfv 6561 |
. . . . . 6
class (((𝑗 ↾t (dom 𝑓 ∪ {𝑥})) CnP 𝑗)‘𝑥) |
| 27 | 19, 26 | wcel 2108 |
. . . . 5
wff (𝑧 ∈ (dom 𝑓 ∪ {𝑥}) ↦ if(𝑧 = 𝑥, 𝑦, (𝑓‘𝑧))) ∈ (((𝑗 ↾t (dom 𝑓 ∪ {𝑥})) CnP 𝑗)‘𝑥) |
| 28 | | ccnfld 21364 |
. . . . . 6
class
ℂfld |
| 29 | | ctopn 17466 |
. . . . . 6
class
TopOpen |
| 30 | 28, 29 | cfv 6561 |
. . . . 5
class
(TopOpen‘ℂfld) |
| 31 | 27, 20, 30 | wsbc 3788 |
. . . 4
wff
[(TopOpen‘ℂfld) / 𝑗](𝑧 ∈ (dom 𝑓 ∪ {𝑥}) ↦ if(𝑧 = 𝑥, 𝑦, (𝑓‘𝑧))) ∈ (((𝑗 ↾t (dom 𝑓 ∪ {𝑥})) CnP 𝑗)‘𝑥) |
| 32 | 31, 14 | cab 2714 |
. . 3
class {𝑦 ∣
[(TopOpen‘ℂfld) / 𝑗](𝑧 ∈ (dom 𝑓 ∪ {𝑥}) ↦ if(𝑧 = 𝑥, 𝑦, (𝑓‘𝑧))) ∈ (((𝑗 ↾t (dom 𝑓 ∪ {𝑥})) CnP 𝑗)‘𝑥)} |
| 33 | 2, 3, 6, 4, 32 | cmpo 7433 |
. 2
class (𝑓 ∈ (ℂ
↑pm ℂ), 𝑥 ∈ ℂ ↦ {𝑦 ∣
[(TopOpen‘ℂfld) / 𝑗](𝑧 ∈ (dom 𝑓 ∪ {𝑥}) ↦ if(𝑧 = 𝑥, 𝑦, (𝑓‘𝑧))) ∈ (((𝑗 ↾t (dom 𝑓 ∪ {𝑥})) CnP 𝑗)‘𝑥)}) |
| 34 | 1, 33 | wceq 1540 |
1
wff
limℂ = (𝑓
∈ (ℂ ↑pm ℂ), 𝑥 ∈ ℂ ↦ {𝑦 ∣
[(TopOpen‘ℂfld) / 𝑗](𝑧 ∈ (dom 𝑓 ∪ {𝑥}) ↦ if(𝑧 = 𝑥, 𝑦, (𝑓‘𝑧))) ∈ (((𝑗 ↾t (dom 𝑓 ∪ {𝑥})) CnP 𝑗)‘𝑥)}) |