MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-limc Structured version   Visualization version   GIF version

Definition df-limc 25374
Description: Define the set of limits of a complex function at a point. Under normal circumstances, this will be a singleton or empty, depending on whether the limit exists. (Contributed by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
df-limc limβ„‚ = (𝑓 ∈ (β„‚ ↑pm β„‚), π‘₯ ∈ β„‚ ↦ {𝑦 ∣ [(TopOpenβ€˜β„‚fld) / 𝑗](𝑧 ∈ (dom 𝑓 βˆͺ {π‘₯}) ↦ if(𝑧 = π‘₯, 𝑦, (π‘“β€˜π‘§))) ∈ (((𝑗 β†Ύt (dom 𝑓 βˆͺ {π‘₯})) CnP 𝑗)β€˜π‘₯)})
Distinct variable group:   𝑓,𝑗,π‘₯,𝑦,𝑧

Detailed syntax breakdown of Definition df-limc
StepHypRef Expression
1 climc 25370 . 2 class limβ„‚
2 vf . . 3 setvar 𝑓
3 vx . . 3 setvar π‘₯
4 cc 11104 . . . 4 class β„‚
5 cpm 8817 . . . 4 class ↑pm
64, 4, 5co 7405 . . 3 class (β„‚ ↑pm β„‚)
7 vz . . . . . . 7 setvar 𝑧
82cv 1540 . . . . . . . . 9 class 𝑓
98cdm 5675 . . . . . . . 8 class dom 𝑓
103cv 1540 . . . . . . . . 9 class π‘₯
1110csn 4627 . . . . . . . 8 class {π‘₯}
129, 11cun 3945 . . . . . . 7 class (dom 𝑓 βˆͺ {π‘₯})
137, 3weq 1966 . . . . . . . 8 wff 𝑧 = π‘₯
14 vy . . . . . . . . 9 setvar 𝑦
1514cv 1540 . . . . . . . 8 class 𝑦
167cv 1540 . . . . . . . . 9 class 𝑧
1716, 8cfv 6540 . . . . . . . 8 class (π‘“β€˜π‘§)
1813, 15, 17cif 4527 . . . . . . 7 class if(𝑧 = π‘₯, 𝑦, (π‘“β€˜π‘§))
197, 12, 18cmpt 5230 . . . . . 6 class (𝑧 ∈ (dom 𝑓 βˆͺ {π‘₯}) ↦ if(𝑧 = π‘₯, 𝑦, (π‘“β€˜π‘§)))
20 vj . . . . . . . . . 10 setvar 𝑗
2120cv 1540 . . . . . . . . 9 class 𝑗
22 crest 17362 . . . . . . . . 9 class β†Ύt
2321, 12, 22co 7405 . . . . . . . 8 class (𝑗 β†Ύt (dom 𝑓 βˆͺ {π‘₯}))
24 ccnp 22720 . . . . . . . 8 class CnP
2523, 21, 24co 7405 . . . . . . 7 class ((𝑗 β†Ύt (dom 𝑓 βˆͺ {π‘₯})) CnP 𝑗)
2610, 25cfv 6540 . . . . . 6 class (((𝑗 β†Ύt (dom 𝑓 βˆͺ {π‘₯})) CnP 𝑗)β€˜π‘₯)
2719, 26wcel 2106 . . . . 5 wff (𝑧 ∈ (dom 𝑓 βˆͺ {π‘₯}) ↦ if(𝑧 = π‘₯, 𝑦, (π‘“β€˜π‘§))) ∈ (((𝑗 β†Ύt (dom 𝑓 βˆͺ {π‘₯})) CnP 𝑗)β€˜π‘₯)
28 ccnfld 20936 . . . . . 6 class β„‚fld
29 ctopn 17363 . . . . . 6 class TopOpen
3028, 29cfv 6540 . . . . 5 class (TopOpenβ€˜β„‚fld)
3127, 20, 30wsbc 3776 . . . 4 wff [(TopOpenβ€˜β„‚fld) / 𝑗](𝑧 ∈ (dom 𝑓 βˆͺ {π‘₯}) ↦ if(𝑧 = π‘₯, 𝑦, (π‘“β€˜π‘§))) ∈ (((𝑗 β†Ύt (dom 𝑓 βˆͺ {π‘₯})) CnP 𝑗)β€˜π‘₯)
3231, 14cab 2709 . . 3 class {𝑦 ∣ [(TopOpenβ€˜β„‚fld) / 𝑗](𝑧 ∈ (dom 𝑓 βˆͺ {π‘₯}) ↦ if(𝑧 = π‘₯, 𝑦, (π‘“β€˜π‘§))) ∈ (((𝑗 β†Ύt (dom 𝑓 βˆͺ {π‘₯})) CnP 𝑗)β€˜π‘₯)}
332, 3, 6, 4, 32cmpo 7407 . 2 class (𝑓 ∈ (β„‚ ↑pm β„‚), π‘₯ ∈ β„‚ ↦ {𝑦 ∣ [(TopOpenβ€˜β„‚fld) / 𝑗](𝑧 ∈ (dom 𝑓 βˆͺ {π‘₯}) ↦ if(𝑧 = π‘₯, 𝑦, (π‘“β€˜π‘§))) ∈ (((𝑗 β†Ύt (dom 𝑓 βˆͺ {π‘₯})) CnP 𝑗)β€˜π‘₯)})
341, 33wceq 1541 1 wff limβ„‚ = (𝑓 ∈ (β„‚ ↑pm β„‚), π‘₯ ∈ β„‚ ↦ {𝑦 ∣ [(TopOpenβ€˜β„‚fld) / 𝑗](𝑧 ∈ (dom 𝑓 βˆͺ {π‘₯}) ↦ if(𝑧 = π‘₯, 𝑦, (π‘“β€˜π‘§))) ∈ (((𝑗 β†Ύt (dom 𝑓 βˆͺ {π‘₯})) CnP 𝑗)β€˜π‘₯)})
Colors of variables: wff setvar class
This definition is referenced by:  limcfval  25380  limcrcl  25382
  Copyright terms: Public domain W3C validator