Detailed syntax breakdown of Definition df-limc
Step | Hyp | Ref
| Expression |
1 | | climc 25035 |
. 2
class
limℂ |
2 | | vf |
. . 3
setvar 𝑓 |
3 | | vx |
. . 3
setvar 𝑥 |
4 | | cc 10878 |
. . . 4
class
ℂ |
5 | | cpm 8625 |
. . . 4
class
↑pm |
6 | 4, 4, 5 | co 7284 |
. . 3
class (ℂ
↑pm ℂ) |
7 | | vz |
. . . . . . 7
setvar 𝑧 |
8 | 2 | cv 1538 |
. . . . . . . . 9
class 𝑓 |
9 | 8 | cdm 5590 |
. . . . . . . 8
class dom 𝑓 |
10 | 3 | cv 1538 |
. . . . . . . . 9
class 𝑥 |
11 | 10 | csn 4562 |
. . . . . . . 8
class {𝑥} |
12 | 9, 11 | cun 3886 |
. . . . . . 7
class (dom
𝑓 ∪ {𝑥}) |
13 | 7, 3 | weq 1967 |
. . . . . . . 8
wff 𝑧 = 𝑥 |
14 | | vy |
. . . . . . . . 9
setvar 𝑦 |
15 | 14 | cv 1538 |
. . . . . . . 8
class 𝑦 |
16 | 7 | cv 1538 |
. . . . . . . . 9
class 𝑧 |
17 | 16, 8 | cfv 6437 |
. . . . . . . 8
class (𝑓‘𝑧) |
18 | 13, 15, 17 | cif 4460 |
. . . . . . 7
class if(𝑧 = 𝑥, 𝑦, (𝑓‘𝑧)) |
19 | 7, 12, 18 | cmpt 5158 |
. . . . . 6
class (𝑧 ∈ (dom 𝑓 ∪ {𝑥}) ↦ if(𝑧 = 𝑥, 𝑦, (𝑓‘𝑧))) |
20 | | vj |
. . . . . . . . . 10
setvar 𝑗 |
21 | 20 | cv 1538 |
. . . . . . . . 9
class 𝑗 |
22 | | crest 17140 |
. . . . . . . . 9
class
↾t |
23 | 21, 12, 22 | co 7284 |
. . . . . . . 8
class (𝑗 ↾t (dom 𝑓 ∪ {𝑥})) |
24 | | ccnp 22385 |
. . . . . . . 8
class
CnP |
25 | 23, 21, 24 | co 7284 |
. . . . . . 7
class ((𝑗 ↾t (dom 𝑓 ∪ {𝑥})) CnP 𝑗) |
26 | 10, 25 | cfv 6437 |
. . . . . 6
class (((𝑗 ↾t (dom 𝑓 ∪ {𝑥})) CnP 𝑗)‘𝑥) |
27 | 19, 26 | wcel 2107 |
. . . . 5
wff (𝑧 ∈ (dom 𝑓 ∪ {𝑥}) ↦ if(𝑧 = 𝑥, 𝑦, (𝑓‘𝑧))) ∈ (((𝑗 ↾t (dom 𝑓 ∪ {𝑥})) CnP 𝑗)‘𝑥) |
28 | | ccnfld 20606 |
. . . . . 6
class
ℂfld |
29 | | ctopn 17141 |
. . . . . 6
class
TopOpen |
30 | 28, 29 | cfv 6437 |
. . . . 5
class
(TopOpen‘ℂfld) |
31 | 27, 20, 30 | wsbc 3717 |
. . . 4
wff
[(TopOpen‘ℂfld) / 𝑗](𝑧 ∈ (dom 𝑓 ∪ {𝑥}) ↦ if(𝑧 = 𝑥, 𝑦, (𝑓‘𝑧))) ∈ (((𝑗 ↾t (dom 𝑓 ∪ {𝑥})) CnP 𝑗)‘𝑥) |
32 | 31, 14 | cab 2716 |
. . 3
class {𝑦 ∣
[(TopOpen‘ℂfld) / 𝑗](𝑧 ∈ (dom 𝑓 ∪ {𝑥}) ↦ if(𝑧 = 𝑥, 𝑦, (𝑓‘𝑧))) ∈ (((𝑗 ↾t (dom 𝑓 ∪ {𝑥})) CnP 𝑗)‘𝑥)} |
33 | 2, 3, 6, 4, 32 | cmpo 7286 |
. 2
class (𝑓 ∈ (ℂ
↑pm ℂ), 𝑥 ∈ ℂ ↦ {𝑦 ∣
[(TopOpen‘ℂfld) / 𝑗](𝑧 ∈ (dom 𝑓 ∪ {𝑥}) ↦ if(𝑧 = 𝑥, 𝑦, (𝑓‘𝑧))) ∈ (((𝑗 ↾t (dom 𝑓 ∪ {𝑥})) CnP 𝑗)‘𝑥)}) |
34 | 1, 33 | wceq 1539 |
1
wff
limℂ = (𝑓
∈ (ℂ ↑pm ℂ), 𝑥 ∈ ℂ ↦ {𝑦 ∣
[(TopOpen‘ℂfld) / 𝑗](𝑧 ∈ (dom 𝑓 ∪ {𝑥}) ↦ if(𝑧 = 𝑥, 𝑦, (𝑓‘𝑧))) ∈ (((𝑗 ↾t (dom 𝑓 ∪ {𝑥})) CnP 𝑗)‘𝑥)}) |