Step | Hyp | Ref
| Expression |
1 | | climc 25370 |
. 2
class
limβ |
2 | | vf |
. . 3
setvar π |
3 | | vx |
. . 3
setvar π₯ |
4 | | cc 11104 |
. . . 4
class
β |
5 | | cpm 8817 |
. . . 4
class
βpm |
6 | 4, 4, 5 | co 7405 |
. . 3
class (β
βpm β) |
7 | | vz |
. . . . . . 7
setvar π§ |
8 | 2 | cv 1540 |
. . . . . . . . 9
class π |
9 | 8 | cdm 5675 |
. . . . . . . 8
class dom π |
10 | 3 | cv 1540 |
. . . . . . . . 9
class π₯ |
11 | 10 | csn 4627 |
. . . . . . . 8
class {π₯} |
12 | 9, 11 | cun 3945 |
. . . . . . 7
class (dom
π βͺ {π₯}) |
13 | 7, 3 | weq 1966 |
. . . . . . . 8
wff π§ = π₯ |
14 | | vy |
. . . . . . . . 9
setvar π¦ |
15 | 14 | cv 1540 |
. . . . . . . 8
class π¦ |
16 | 7 | cv 1540 |
. . . . . . . . 9
class π§ |
17 | 16, 8 | cfv 6540 |
. . . . . . . 8
class (πβπ§) |
18 | 13, 15, 17 | cif 4527 |
. . . . . . 7
class if(π§ = π₯, π¦, (πβπ§)) |
19 | 7, 12, 18 | cmpt 5230 |
. . . . . 6
class (π§ β (dom π βͺ {π₯}) β¦ if(π§ = π₯, π¦, (πβπ§))) |
20 | | vj |
. . . . . . . . . 10
setvar π |
21 | 20 | cv 1540 |
. . . . . . . . 9
class π |
22 | | crest 17362 |
. . . . . . . . 9
class
βΎt |
23 | 21, 12, 22 | co 7405 |
. . . . . . . 8
class (π βΎt (dom π βͺ {π₯})) |
24 | | ccnp 22720 |
. . . . . . . 8
class
CnP |
25 | 23, 21, 24 | co 7405 |
. . . . . . 7
class ((π βΎt (dom π βͺ {π₯})) CnP π) |
26 | 10, 25 | cfv 6540 |
. . . . . 6
class (((π βΎt (dom π βͺ {π₯})) CnP π)βπ₯) |
27 | 19, 26 | wcel 2106 |
. . . . 5
wff (π§ β (dom π βͺ {π₯}) β¦ if(π§ = π₯, π¦, (πβπ§))) β (((π βΎt (dom π βͺ {π₯})) CnP π)βπ₯) |
28 | | ccnfld 20936 |
. . . . . 6
class
βfld |
29 | | ctopn 17363 |
. . . . . 6
class
TopOpen |
30 | 28, 29 | cfv 6540 |
. . . . 5
class
(TopOpenββfld) |
31 | 27, 20, 30 | wsbc 3776 |
. . . 4
wff
[(TopOpenββfld) / π](π§ β (dom π βͺ {π₯}) β¦ if(π§ = π₯, π¦, (πβπ§))) β (((π βΎt (dom π βͺ {π₯})) CnP π)βπ₯) |
32 | 31, 14 | cab 2709 |
. . 3
class {π¦ β£
[(TopOpenββfld) / π](π§ β (dom π βͺ {π₯}) β¦ if(π§ = π₯, π¦, (πβπ§))) β (((π βΎt (dom π βͺ {π₯})) CnP π)βπ₯)} |
33 | 2, 3, 6, 4, 32 | cmpo 7407 |
. 2
class (π β (β
βpm β), π₯ β β β¦ {π¦ β£
[(TopOpenββfld) / π](π§ β (dom π βͺ {π₯}) β¦ if(π§ = π₯, π¦, (πβπ§))) β (((π βΎt (dom π βͺ {π₯})) CnP π)βπ₯)}) |
34 | 1, 33 | wceq 1541 |
1
wff
limβ = (π
β (β βpm β), π₯ β β β¦ {π¦ β£
[(TopOpenββfld) / π](π§ β (dom π βͺ {π₯}) β¦ if(π§ = π₯, π¦, (πβπ§))) β (((π βΎt (dom π βͺ {π₯})) CnP π)βπ₯)}) |