Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > limcrcl | Structured version Visualization version GIF version |
Description: Reverse closure for the limit operator. (Contributed by Mario Carneiro, 28-Dec-2016.) |
Ref | Expression |
---|---|
limcrcl | ⊢ (𝐶 ∈ (𝐹 limℂ 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-limc 25136 | . . 3 ⊢ limℂ = (𝑓 ∈ (ℂ ↑pm ℂ), 𝑥 ∈ ℂ ↦ {𝑦 ∣ [(TopOpen‘ℂfld) / 𝑗](𝑧 ∈ (dom 𝑓 ∪ {𝑥}) ↦ if(𝑧 = 𝑥, 𝑦, (𝑓‘𝑧))) ∈ (((𝑗 ↾t (dom 𝑓 ∪ {𝑥})) CnP 𝑗)‘𝑥)}) | |
2 | 1 | elmpocl 7573 | . 2 ⊢ (𝐶 ∈ (𝐹 limℂ 𝐵) → (𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝐵 ∈ ℂ)) |
3 | cnex 11053 | . . . . 5 ⊢ ℂ ∈ V | |
4 | 3, 3 | elpm2 8733 | . . . 4 ⊢ (𝐹 ∈ (ℂ ↑pm ℂ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ)) |
5 | 4 | anbi1i 624 | . . 3 ⊢ ((𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝐵 ∈ ℂ) ↔ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ 𝐵 ∈ ℂ)) |
6 | df-3an 1088 | . . 3 ⊢ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ↔ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ 𝐵 ∈ ℂ)) | |
7 | 5, 6 | bitr4i 277 | . 2 ⊢ ((𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝐵 ∈ ℂ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) |
8 | 2, 7 | sylib 217 | 1 ⊢ (𝐶 ∈ (𝐹 limℂ 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2105 {cab 2713 [wsbc 3727 ∪ cun 3896 ⊆ wss 3898 ifcif 4473 {csn 4573 ↦ cmpt 5175 dom cdm 5620 ⟶wf 6475 ‘cfv 6479 (class class class)co 7337 ↑pm cpm 8687 ℂcc 10970 ↾t crest 17228 TopOpenctopn 17229 ℂfldccnfld 20703 CnP ccnp 22482 limℂ climc 25132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 df-pm 8689 df-limc 25136 |
This theorem is referenced by: limccl 25145 limcdif 25146 limcresi 25155 limcres 25156 limccnp 25161 limccnp2 25162 limcco 25163 limcun 25165 mullimc 43502 limccog 43506 mullimcf 43509 limcperiod 43514 limcmptdm 43521 neglimc 43533 addlimc 43534 0ellimcdiv 43535 reclimc 43539 |
Copyright terms: Public domain | W3C validator |