Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > limcrcl | Structured version Visualization version GIF version |
Description: Reverse closure for the limit operator. (Contributed by Mario Carneiro, 28-Dec-2016.) |
Ref | Expression |
---|---|
limcrcl | ⊢ (𝐶 ∈ (𝐹 limℂ 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-limc 25030 | . . 3 ⊢ limℂ = (𝑓 ∈ (ℂ ↑pm ℂ), 𝑥 ∈ ℂ ↦ {𝑦 ∣ [(TopOpen‘ℂfld) / 𝑗](𝑧 ∈ (dom 𝑓 ∪ {𝑥}) ↦ if(𝑧 = 𝑥, 𝑦, (𝑓‘𝑧))) ∈ (((𝑗 ↾t (dom 𝑓 ∪ {𝑥})) CnP 𝑗)‘𝑥)}) | |
2 | 1 | elmpocl 7511 | . 2 ⊢ (𝐶 ∈ (𝐹 limℂ 𝐵) → (𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝐵 ∈ ℂ)) |
3 | cnex 10952 | . . . . 5 ⊢ ℂ ∈ V | |
4 | 3, 3 | elpm2 8662 | . . . 4 ⊢ (𝐹 ∈ (ℂ ↑pm ℂ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ)) |
5 | 4 | anbi1i 624 | . . 3 ⊢ ((𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝐵 ∈ ℂ) ↔ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ 𝐵 ∈ ℂ)) |
6 | df-3an 1088 | . . 3 ⊢ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ↔ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ 𝐵 ∈ ℂ)) | |
7 | 5, 6 | bitr4i 277 | . 2 ⊢ ((𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝐵 ∈ ℂ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) |
8 | 2, 7 | sylib 217 | 1 ⊢ (𝐶 ∈ (𝐹 limℂ 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 {cab 2715 [wsbc 3716 ∪ cun 3885 ⊆ wss 3887 ifcif 4459 {csn 4561 ↦ cmpt 5157 dom cdm 5589 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ↑pm cpm 8616 ℂcc 10869 ↾t crest 17131 TopOpenctopn 17132 ℂfldccnfld 20597 CnP ccnp 22376 limℂ climc 25026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-pm 8618 df-limc 25030 |
This theorem is referenced by: limccl 25039 limcdif 25040 limcresi 25049 limcres 25050 limccnp 25055 limccnp2 25056 limcco 25057 limcun 25059 mullimc 43157 limccog 43161 mullimcf 43164 limcperiod 43169 limcmptdm 43176 neglimc 43188 addlimc 43189 0ellimcdiv 43190 reclimc 43194 |
Copyright terms: Public domain | W3C validator |