MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcfval Structured version   Visualization version   GIF version

Theorem limcfval 25830
Description: Value and set bounds on the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
limcval.j 𝐽 = (𝐾t (𝐴 ∪ {𝐵}))
limcval.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
limcfval ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 lim 𝐵) = {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ∧ (𝐹 lim 𝐵) ⊆ ℂ))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑦,𝐹,𝑧   𝑦,𝐾,𝑧   𝑦,𝐽
Allowed substitution hint:   𝐽(𝑧)

Proof of Theorem limcfval
Dummy variables 𝑓 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-limc 25824 . . . 4 lim = (𝑓 ∈ (ℂ ↑pm ℂ), 𝑥 ∈ ℂ ↦ {𝑦[(TopOpen‘ℂfld) / 𝑗](𝑧 ∈ (dom 𝑓 ∪ {𝑥}) ↦ if(𝑧 = 𝑥, 𝑦, (𝑓𝑧))) ∈ (((𝑗t (dom 𝑓 ∪ {𝑥})) CnP 𝑗)‘𝑥)})
21a1i 11 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → lim = (𝑓 ∈ (ℂ ↑pm ℂ), 𝑥 ∈ ℂ ↦ {𝑦[(TopOpen‘ℂfld) / 𝑗](𝑧 ∈ (dom 𝑓 ∪ {𝑥}) ↦ if(𝑧 = 𝑥, 𝑦, (𝑓𝑧))) ∈ (((𝑗t (dom 𝑓 ∪ {𝑥})) CnP 𝑗)‘𝑥)}))
3 fvexd 6896 . . . . 5 (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑓 = 𝐹𝑥 = 𝐵)) → (TopOpen‘ℂfld) ∈ V)
4 simplrl 776 . . . . . . . . . 10 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑓 = 𝐹𝑥 = 𝐵)) ∧ 𝑗 = (TopOpen‘ℂfld)) → 𝑓 = 𝐹)
54dmeqd 5890 . . . . . . . . 9 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑓 = 𝐹𝑥 = 𝐵)) ∧ 𝑗 = (TopOpen‘ℂfld)) → dom 𝑓 = dom 𝐹)
6 simpll1 1213 . . . . . . . . . 10 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑓 = 𝐹𝑥 = 𝐵)) ∧ 𝑗 = (TopOpen‘ℂfld)) → 𝐹:𝐴⟶ℂ)
76fdmd 6721 . . . . . . . . 9 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑓 = 𝐹𝑥 = 𝐵)) ∧ 𝑗 = (TopOpen‘ℂfld)) → dom 𝐹 = 𝐴)
85, 7eqtrd 2771 . . . . . . . 8 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑓 = 𝐹𝑥 = 𝐵)) ∧ 𝑗 = (TopOpen‘ℂfld)) → dom 𝑓 = 𝐴)
9 simplrr 777 . . . . . . . . 9 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑓 = 𝐹𝑥 = 𝐵)) ∧ 𝑗 = (TopOpen‘ℂfld)) → 𝑥 = 𝐵)
109sneqd 4618 . . . . . . . 8 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑓 = 𝐹𝑥 = 𝐵)) ∧ 𝑗 = (TopOpen‘ℂfld)) → {𝑥} = {𝐵})
118, 10uneq12d 4149 . . . . . . 7 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑓 = 𝐹𝑥 = 𝐵)) ∧ 𝑗 = (TopOpen‘ℂfld)) → (dom 𝑓 ∪ {𝑥}) = (𝐴 ∪ {𝐵}))
129eqeq2d 2747 . . . . . . . 8 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑓 = 𝐹𝑥 = 𝐵)) ∧ 𝑗 = (TopOpen‘ℂfld)) → (𝑧 = 𝑥𝑧 = 𝐵))
134fveq1d 6883 . . . . . . . 8 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑓 = 𝐹𝑥 = 𝐵)) ∧ 𝑗 = (TopOpen‘ℂfld)) → (𝑓𝑧) = (𝐹𝑧))
1412, 13ifbieq2d 4532 . . . . . . 7 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑓 = 𝐹𝑥 = 𝐵)) ∧ 𝑗 = (TopOpen‘ℂfld)) → if(𝑧 = 𝑥, 𝑦, (𝑓𝑧)) = if(𝑧 = 𝐵, 𝑦, (𝐹𝑧)))
1511, 14mpteq12dv 5212 . . . . . 6 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑓 = 𝐹𝑥 = 𝐵)) ∧ 𝑗 = (TopOpen‘ℂfld)) → (𝑧 ∈ (dom 𝑓 ∪ {𝑥}) ↦ if(𝑧 = 𝑥, 𝑦, (𝑓𝑧))) = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))))
16 simpr 484 . . . . . . . . . . 11 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑓 = 𝐹𝑥 = 𝐵)) ∧ 𝑗 = (TopOpen‘ℂfld)) → 𝑗 = (TopOpen‘ℂfld))
17 limcval.k . . . . . . . . . . 11 𝐾 = (TopOpen‘ℂfld)
1816, 17eqtr4di 2789 . . . . . . . . . 10 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑓 = 𝐹𝑥 = 𝐵)) ∧ 𝑗 = (TopOpen‘ℂfld)) → 𝑗 = 𝐾)
1918, 11oveq12d 7428 . . . . . . . . 9 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑓 = 𝐹𝑥 = 𝐵)) ∧ 𝑗 = (TopOpen‘ℂfld)) → (𝑗t (dom 𝑓 ∪ {𝑥})) = (𝐾t (𝐴 ∪ {𝐵})))
20 limcval.j . . . . . . . . 9 𝐽 = (𝐾t (𝐴 ∪ {𝐵}))
2119, 20eqtr4di 2789 . . . . . . . 8 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑓 = 𝐹𝑥 = 𝐵)) ∧ 𝑗 = (TopOpen‘ℂfld)) → (𝑗t (dom 𝑓 ∪ {𝑥})) = 𝐽)
2221, 18oveq12d 7428 . . . . . . 7 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑓 = 𝐹𝑥 = 𝐵)) ∧ 𝑗 = (TopOpen‘ℂfld)) → ((𝑗t (dom 𝑓 ∪ {𝑥})) CnP 𝑗) = (𝐽 CnP 𝐾))
2322, 9fveq12d 6888 . . . . . 6 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑓 = 𝐹𝑥 = 𝐵)) ∧ 𝑗 = (TopOpen‘ℂfld)) → (((𝑗t (dom 𝑓 ∪ {𝑥})) CnP 𝑗)‘𝑥) = ((𝐽 CnP 𝐾)‘𝐵))
2415, 23eleq12d 2829 . . . . 5 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑓 = 𝐹𝑥 = 𝐵)) ∧ 𝑗 = (TopOpen‘ℂfld)) → ((𝑧 ∈ (dom 𝑓 ∪ {𝑥}) ↦ if(𝑧 = 𝑥, 𝑦, (𝑓𝑧))) ∈ (((𝑗t (dom 𝑓 ∪ {𝑥})) CnP 𝑗)‘𝑥) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
253, 24sbcied 3814 . . . 4 (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑓 = 𝐹𝑥 = 𝐵)) → ([(TopOpen‘ℂfld) / 𝑗](𝑧 ∈ (dom 𝑓 ∪ {𝑥}) ↦ if(𝑧 = 𝑥, 𝑦, (𝑓𝑧))) ∈ (((𝑗t (dom 𝑓 ∪ {𝑥})) CnP 𝑗)‘𝑥) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
2625abbidv 2802 . . 3 (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑓 = 𝐹𝑥 = 𝐵)) → {𝑦[(TopOpen‘ℂfld) / 𝑗](𝑧 ∈ (dom 𝑓 ∪ {𝑥}) ↦ if(𝑧 = 𝑥, 𝑦, (𝑓𝑧))) ∈ (((𝑗t (dom 𝑓 ∪ {𝑥})) CnP 𝑗)‘𝑥)} = {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)})
27 cnex 11215 . . . . 5 ℂ ∈ V
28 elpm2r 8864 . . . . 5 (((ℂ ∈ V ∧ ℂ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ)) → 𝐹 ∈ (ℂ ↑pm ℂ))
2927, 27, 28mpanl12 702 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ) → 𝐹 ∈ (ℂ ↑pm ℂ))
30293adant3 1132 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → 𝐹 ∈ (ℂ ↑pm ℂ))
31 simp3 1138 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
32 eqid 2736 . . . . . 6 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧)))
3320, 17, 32limcvallem 25829 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝑦 ∈ ℂ))
3433abssdv 4048 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ⊆ ℂ)
3527ssex 5296 . . . 4 ({𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ⊆ ℂ → {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ∈ V)
3634, 35syl 17 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ∈ V)
372, 26, 30, 31, 36ovmpod 7564 . 2 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → (𝐹 lim 𝐵) = {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)})
3837, 34eqsstrd 3998 . 2 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → (𝐹 lim 𝐵) ⊆ ℂ)
3937, 38jca 511 1 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 lim 𝐵) = {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ∧ (𝐹 lim 𝐵) ⊆ ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2714  Vcvv 3464  [wsbc 3770  cun 3929  wss 3931  ifcif 4505  {csn 4606  cmpt 5206  dom cdm 5659  wf 6532  cfv 6536  (class class class)co 7410  cmpo 7412  pm cpm 8846  cc 11132  t crest 17439  TopOpenctopn 17440  fldccnfld 21320   CnP ccnp 23168   lim climc 25820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9428  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-fz 13530  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-struct 17171  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-mulr 17290  df-starv 17291  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-rest 17441  df-topn 17442  df-topgen 17462  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cnp 23171  df-xms 24264  df-ms 24265  df-limc 25824
This theorem is referenced by:  ellimc  25831  limccl  25833
  Copyright terms: Public domain W3C validator