Step | Hyp | Ref
| Expression |
1 | | cdv 25372 |
. 2
class
D |
2 | | vs |
. . 3
setvar π |
3 | | vf |
. . 3
setvar π |
4 | | cc 11105 |
. . . 4
class
β |
5 | 4 | cpw 4602 |
. . 3
class π«
β |
6 | 2 | cv 1541 |
. . . 4
class π |
7 | | cpm 8818 |
. . . 4
class
βpm |
8 | 4, 6, 7 | co 7406 |
. . 3
class (β
βpm π ) |
9 | | vx |
. . . 4
setvar π₯ |
10 | 3 | cv 1541 |
. . . . . 6
class π |
11 | 10 | cdm 5676 |
. . . . 5
class dom π |
12 | | ccnfld 20937 |
. . . . . . . 8
class
βfld |
13 | | ctopn 17364 |
. . . . . . . 8
class
TopOpen |
14 | 12, 13 | cfv 6541 |
. . . . . . 7
class
(TopOpenββfld) |
15 | | crest 17363 |
. . . . . . 7
class
βΎt |
16 | 14, 6, 15 | co 7406 |
. . . . . 6
class
((TopOpenββfld) βΎt π ) |
17 | | cnt 22513 |
. . . . . 6
class
int |
18 | 16, 17 | cfv 6541 |
. . . . 5
class
(intβ((TopOpenββfld) βΎt
π )) |
19 | 11, 18 | cfv 6541 |
. . . 4
class
((intβ((TopOpenββfld) βΎt
π ))βdom π) |
20 | 9 | cv 1541 |
. . . . . 6
class π₯ |
21 | 20 | csn 4628 |
. . . . 5
class {π₯} |
22 | | vz |
. . . . . . 7
setvar π§ |
23 | 11, 21 | cdif 3945 |
. . . . . . 7
class (dom
π β {π₯}) |
24 | 22 | cv 1541 |
. . . . . . . . . 10
class π§ |
25 | 24, 10 | cfv 6541 |
. . . . . . . . 9
class (πβπ§) |
26 | 20, 10 | cfv 6541 |
. . . . . . . . 9
class (πβπ₯) |
27 | | cmin 11441 |
. . . . . . . . 9
class
β |
28 | 25, 26, 27 | co 7406 |
. . . . . . . 8
class ((πβπ§) β (πβπ₯)) |
29 | 24, 20, 27 | co 7406 |
. . . . . . . 8
class (π§ β π₯) |
30 | | cdiv 11868 |
. . . . . . . 8
class
/ |
31 | 28, 29, 30 | co 7406 |
. . . . . . 7
class (((πβπ§) β (πβπ₯)) / (π§ β π₯)) |
32 | 22, 23, 31 | cmpt 5231 |
. . . . . 6
class (π§ β (dom π β {π₯}) β¦ (((πβπ§) β (πβπ₯)) / (π§ β π₯))) |
33 | | climc 25371 |
. . . . . 6
class
limβ |
34 | 32, 20, 33 | co 7406 |
. . . . 5
class ((π§ β (dom π β {π₯}) β¦ (((πβπ§) β (πβπ₯)) / (π§ β π₯))) limβ π₯) |
35 | 21, 34 | cxp 5674 |
. . . 4
class ({π₯} Γ ((π§ β (dom π β {π₯}) β¦ (((πβπ§) β (πβπ₯)) / (π§ β π₯))) limβ π₯)) |
36 | 9, 19, 35 | ciun 4997 |
. . 3
class βͺ π₯ β
((intβ((TopOpenββfld) βΎt π ))βdom π)({π₯} Γ ((π§ β (dom π β {π₯}) β¦ (((πβπ§) β (πβπ₯)) / (π§ β π₯))) limβ π₯)) |
37 | 2, 3, 5, 8, 36 | cmpo 7408 |
. 2
class (π β π« β, π β (β
βpm π )
β¦ βͺ π₯ β
((intβ((TopOpenββfld) βΎt π ))βdom π)({π₯} Γ ((π§ β (dom π β {π₯}) β¦ (((πβπ§) β (πβπ₯)) / (π§ β π₯))) limβ π₯))) |
38 | 1, 37 | wceq 1542 |
1
wff D = (π β π« β, π β (β
βpm π )
β¦ βͺ π₯ β
((intβ((TopOpenββfld) βΎt π ))βdom π)({π₯} Γ ((π§ β (dom π β {π₯}) β¦ (((πβπ§) β (πβπ₯)) / (π§ β π₯))) limβ π₯))) |