Detailed syntax breakdown of Definition df-dv
Step | Hyp | Ref
| Expression |
1 | | cdv 24562 |
. 2
class
D |
2 | | vs |
. . 3
setvar 𝑠 |
3 | | vf |
. . 3
setvar 𝑓 |
4 | | cc 10573 |
. . . 4
class
ℂ |
5 | 4 | cpw 4494 |
. . 3
class 𝒫
ℂ |
6 | 2 | cv 1537 |
. . . 4
class 𝑠 |
7 | | cpm 8417 |
. . . 4
class
↑pm |
8 | 4, 6, 7 | co 7150 |
. . 3
class (ℂ
↑pm 𝑠) |
9 | | vx |
. . . 4
setvar 𝑥 |
10 | 3 | cv 1537 |
. . . . . 6
class 𝑓 |
11 | 10 | cdm 5524 |
. . . . 5
class dom 𝑓 |
12 | | ccnfld 20166 |
. . . . . . . 8
class
ℂfld |
13 | | ctopn 16753 |
. . . . . . . 8
class
TopOpen |
14 | 12, 13 | cfv 6335 |
. . . . . . 7
class
(TopOpen‘ℂfld) |
15 | | crest 16752 |
. . . . . . 7
class
↾t |
16 | 14, 6, 15 | co 7150 |
. . . . . 6
class
((TopOpen‘ℂfld) ↾t 𝑠) |
17 | | cnt 21717 |
. . . . . 6
class
int |
18 | 16, 17 | cfv 6335 |
. . . . 5
class
(int‘((TopOpen‘ℂfld) ↾t
𝑠)) |
19 | 11, 18 | cfv 6335 |
. . . 4
class
((int‘((TopOpen‘ℂfld) ↾t
𝑠))‘dom 𝑓) |
20 | 9 | cv 1537 |
. . . . . 6
class 𝑥 |
21 | 20 | csn 4522 |
. . . . 5
class {𝑥} |
22 | | vz |
. . . . . . 7
setvar 𝑧 |
23 | 11, 21 | cdif 3855 |
. . . . . . 7
class (dom
𝑓 ∖ {𝑥}) |
24 | 22 | cv 1537 |
. . . . . . . . . 10
class 𝑧 |
25 | 24, 10 | cfv 6335 |
. . . . . . . . 9
class (𝑓‘𝑧) |
26 | 20, 10 | cfv 6335 |
. . . . . . . . 9
class (𝑓‘𝑥) |
27 | | cmin 10908 |
. . . . . . . . 9
class
− |
28 | 25, 26, 27 | co 7150 |
. . . . . . . 8
class ((𝑓‘𝑧) − (𝑓‘𝑥)) |
29 | 24, 20, 27 | co 7150 |
. . . . . . . 8
class (𝑧 − 𝑥) |
30 | | cdiv 11335 |
. . . . . . . 8
class
/ |
31 | 28, 29, 30 | co 7150 |
. . . . . . 7
class (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥)) |
32 | 22, 23, 31 | cmpt 5112 |
. . . . . 6
class (𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) |
33 | | climc 24561 |
. . . . . 6
class
limℂ |
34 | 32, 20, 33 | co 7150 |
. . . . 5
class ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥) |
35 | 21, 34 | cxp 5522 |
. . . 4
class ({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) |
36 | 9, 19, 35 | ciun 4883 |
. . 3
class ∪ 𝑥 ∈
((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) |
37 | 2, 3, 5, 8, 36 | cmpo 7152 |
. 2
class (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ
↑pm 𝑠)
↦ ∪ 𝑥 ∈
((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) |
38 | 1, 37 | wceq 1538 |
1
wff D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ
↑pm 𝑠)
↦ ∪ 𝑥 ∈
((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) |