MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-dv Structured version   Visualization version   GIF version

Definition df-dv 25376
Description: Define the derivative operator. This acts on functions to produce a function that is defined where the original function is differentiable, with value the derivative of the function at these points. The set 𝑠 here is the ambient topological space under which we are evaluating the continuity of the difference quotient. Although the definition is valid for any subset of β„‚ and is well-behaved when 𝑠 contains no isolated points, we will restrict our attention to the cases 𝑠 = ℝ or 𝑠 = β„‚ for the majority of the development, these corresponding respectively to real and complex differentiation. (Contributed by Mario Carneiro, 7-Aug-2014.)
Assertion
Ref Expression
df-dv D = (𝑠 ∈ 𝒫 β„‚, 𝑓 ∈ (β„‚ ↑pm 𝑠) ↦ βˆͺ π‘₯ ∈ ((intβ€˜((TopOpenβ€˜β„‚fld) β†Ύt 𝑠))β€˜dom 𝑓)({π‘₯} Γ— ((𝑧 ∈ (dom 𝑓 βˆ– {π‘₯}) ↦ (((π‘“β€˜π‘§) βˆ’ (π‘“β€˜π‘₯)) / (𝑧 βˆ’ π‘₯))) limβ„‚ π‘₯)))
Distinct variable group:   𝑓,𝑠,π‘₯,𝑧

Detailed syntax breakdown of Definition df-dv
StepHypRef Expression
1 cdv 25372 . 2 class D
2 vs . . 3 setvar 𝑠
3 vf . . 3 setvar 𝑓
4 cc 11105 . . . 4 class β„‚
54cpw 4602 . . 3 class 𝒫 β„‚
62cv 1541 . . . 4 class 𝑠
7 cpm 8818 . . . 4 class ↑pm
84, 6, 7co 7406 . . 3 class (β„‚ ↑pm 𝑠)
9 vx . . . 4 setvar π‘₯
103cv 1541 . . . . . 6 class 𝑓
1110cdm 5676 . . . . 5 class dom 𝑓
12 ccnfld 20937 . . . . . . . 8 class β„‚fld
13 ctopn 17364 . . . . . . . 8 class TopOpen
1412, 13cfv 6541 . . . . . . 7 class (TopOpenβ€˜β„‚fld)
15 crest 17363 . . . . . . 7 class β†Ύt
1614, 6, 15co 7406 . . . . . 6 class ((TopOpenβ€˜β„‚fld) β†Ύt 𝑠)
17 cnt 22513 . . . . . 6 class int
1816, 17cfv 6541 . . . . 5 class (intβ€˜((TopOpenβ€˜β„‚fld) β†Ύt 𝑠))
1911, 18cfv 6541 . . . 4 class ((intβ€˜((TopOpenβ€˜β„‚fld) β†Ύt 𝑠))β€˜dom 𝑓)
209cv 1541 . . . . . 6 class π‘₯
2120csn 4628 . . . . 5 class {π‘₯}
22 vz . . . . . . 7 setvar 𝑧
2311, 21cdif 3945 . . . . . . 7 class (dom 𝑓 βˆ– {π‘₯})
2422cv 1541 . . . . . . . . . 10 class 𝑧
2524, 10cfv 6541 . . . . . . . . 9 class (π‘“β€˜π‘§)
2620, 10cfv 6541 . . . . . . . . 9 class (π‘“β€˜π‘₯)
27 cmin 11441 . . . . . . . . 9 class βˆ’
2825, 26, 27co 7406 . . . . . . . 8 class ((π‘“β€˜π‘§) βˆ’ (π‘“β€˜π‘₯))
2924, 20, 27co 7406 . . . . . . . 8 class (𝑧 βˆ’ π‘₯)
30 cdiv 11868 . . . . . . . 8 class /
3128, 29, 30co 7406 . . . . . . 7 class (((π‘“β€˜π‘§) βˆ’ (π‘“β€˜π‘₯)) / (𝑧 βˆ’ π‘₯))
3222, 23, 31cmpt 5231 . . . . . 6 class (𝑧 ∈ (dom 𝑓 βˆ– {π‘₯}) ↦ (((π‘“β€˜π‘§) βˆ’ (π‘“β€˜π‘₯)) / (𝑧 βˆ’ π‘₯)))
33 climc 25371 . . . . . 6 class limβ„‚
3432, 20, 33co 7406 . . . . 5 class ((𝑧 ∈ (dom 𝑓 βˆ– {π‘₯}) ↦ (((π‘“β€˜π‘§) βˆ’ (π‘“β€˜π‘₯)) / (𝑧 βˆ’ π‘₯))) limβ„‚ π‘₯)
3521, 34cxp 5674 . . . 4 class ({π‘₯} Γ— ((𝑧 ∈ (dom 𝑓 βˆ– {π‘₯}) ↦ (((π‘“β€˜π‘§) βˆ’ (π‘“β€˜π‘₯)) / (𝑧 βˆ’ π‘₯))) limβ„‚ π‘₯))
369, 19, 35ciun 4997 . . 3 class βˆͺ π‘₯ ∈ ((intβ€˜((TopOpenβ€˜β„‚fld) β†Ύt 𝑠))β€˜dom 𝑓)({π‘₯} Γ— ((𝑧 ∈ (dom 𝑓 βˆ– {π‘₯}) ↦ (((π‘“β€˜π‘§) βˆ’ (π‘“β€˜π‘₯)) / (𝑧 βˆ’ π‘₯))) limβ„‚ π‘₯))
372, 3, 5, 8, 36cmpo 7408 . 2 class (𝑠 ∈ 𝒫 β„‚, 𝑓 ∈ (β„‚ ↑pm 𝑠) ↦ βˆͺ π‘₯ ∈ ((intβ€˜((TopOpenβ€˜β„‚fld) β†Ύt 𝑠))β€˜dom 𝑓)({π‘₯} Γ— ((𝑧 ∈ (dom 𝑓 βˆ– {π‘₯}) ↦ (((π‘“β€˜π‘§) βˆ’ (π‘“β€˜π‘₯)) / (𝑧 βˆ’ π‘₯))) limβ„‚ π‘₯)))
381, 37wceq 1542 1 wff D = (𝑠 ∈ 𝒫 β„‚, 𝑓 ∈ (β„‚ ↑pm 𝑠) ↦ βˆͺ π‘₯ ∈ ((intβ€˜((TopOpenβ€˜β„‚fld) β†Ύt 𝑠))β€˜dom 𝑓)({π‘₯} Γ— ((𝑧 ∈ (dom 𝑓 βˆ– {π‘₯}) ↦ (((π‘“β€˜π‘§) βˆ’ (π‘“β€˜π‘₯)) / (𝑧 βˆ’ π‘₯))) limβ„‚ π‘₯)))
Colors of variables: wff setvar class
This definition is referenced by:  reldv  25379  dvfval  25406  dvbsss  25411  perfdvf  25412
  Copyright terms: Public domain W3C validator