Step | Hyp | Ref
| Expression |
1 | | clininds 47111 |
. 2
class
linIndS |
2 | | vs |
. . . . . 6
setvar π |
3 | 2 | cv 1540 |
. . . . 5
class π |
4 | | vm |
. . . . . . . 8
setvar π |
5 | 4 | cv 1540 |
. . . . . . 7
class π |
6 | | cbs 17143 |
. . . . . . 7
class
Base |
7 | 5, 6 | cfv 6543 |
. . . . . 6
class
(Baseβπ) |
8 | 7 | cpw 4602 |
. . . . 5
class π«
(Baseβπ) |
9 | 3, 8 | wcel 2106 |
. . . 4
wff π β π«
(Baseβπ) |
10 | | vf |
. . . . . . . . 9
setvar π |
11 | 10 | cv 1540 |
. . . . . . . 8
class π |
12 | | csca 17199 |
. . . . . . . . . 10
class
Scalar |
13 | 5, 12 | cfv 6543 |
. . . . . . . . 9
class
(Scalarβπ) |
14 | | c0g 17384 |
. . . . . . . . 9
class
0g |
15 | 13, 14 | cfv 6543 |
. . . . . . . 8
class
(0gβ(Scalarβπ)) |
16 | | cfsupp 9360 |
. . . . . . . 8
class
finSupp |
17 | 11, 15, 16 | wbr 5148 |
. . . . . . 7
wff π finSupp
(0gβ(Scalarβπ)) |
18 | | clinc 47075 |
. . . . . . . . . 10
class
linC |
19 | 5, 18 | cfv 6543 |
. . . . . . . . 9
class ( linC
βπ) |
20 | 11, 3, 19 | co 7408 |
. . . . . . . 8
class (π( linC βπ)π ) |
21 | 5, 14 | cfv 6543 |
. . . . . . . 8
class
(0gβπ) |
22 | 20, 21 | wceq 1541 |
. . . . . . 7
wff (π( linC βπ)π ) = (0gβπ) |
23 | 17, 22 | wa 396 |
. . . . . 6
wff (π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)π ) = (0gβπ)) |
24 | | vx |
. . . . . . . . . 10
setvar π₯ |
25 | 24 | cv 1540 |
. . . . . . . . 9
class π₯ |
26 | 25, 11 | cfv 6543 |
. . . . . . . 8
class (πβπ₯) |
27 | 26, 15 | wceq 1541 |
. . . . . . 7
wff (πβπ₯) = (0gβ(Scalarβπ)) |
28 | 27, 24, 3 | wral 3061 |
. . . . . 6
wff
βπ₯ β
π (πβπ₯) = (0gβ(Scalarβπ)) |
29 | 23, 28 | wi 4 |
. . . . 5
wff ((π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)π ) = (0gβπ)) β βπ₯ β π (πβπ₯) = (0gβ(Scalarβπ))) |
30 | 13, 6 | cfv 6543 |
. . . . . 6
class
(Baseβ(Scalarβπ)) |
31 | | cmap 8819 |
. . . . . 6
class
βm |
32 | 30, 3, 31 | co 7408 |
. . . . 5
class
((Baseβ(Scalarβπ)) βm π ) |
33 | 29, 10, 32 | wral 3061 |
. . . 4
wff
βπ β
((Baseβ(Scalarβπ)) βm π )((π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)π ) = (0gβπ)) β βπ₯ β π (πβπ₯) = (0gβ(Scalarβπ))) |
34 | 9, 33 | wa 396 |
. . 3
wff (π β π«
(Baseβπ) β§
βπ β
((Baseβ(Scalarβπ)) βm π )((π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)π ) = (0gβπ)) β βπ₯ β π (πβπ₯) = (0gβ(Scalarβπ)))) |
35 | 34, 2, 4 | copab 5210 |
. 2
class
{β¨π , πβ© β£ (π β π«
(Baseβπ) β§
βπ β
((Baseβ(Scalarβπ)) βm π )((π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)π ) = (0gβπ)) β βπ₯ β π (πβπ₯) = (0gβ(Scalarβπ))))} |
36 | 1, 35 | wceq 1541 |
1
wff linIndS =
{β¨π , πβ© β£ (π β π«
(Baseβπ) β§
βπ β
((Baseβ(Scalarβπ)) βm π )((π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)π ) = (0gβπ)) β βπ₯ β π (πβπ₯) = (0gβ(Scalarβπ))))} |