Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-lininds Structured version   Visualization version   GIF version

Definition df-lininds 47113
Description: Define the relation between a module and its linearly independent subsets. (Contributed by AV, 12-Apr-2019.) (Revised by AV, 24-Apr-2019.) (Revised by AV, 30-Jul-2019.)
Assertion
Ref Expression
df-lininds linIndS = {βŸ¨π‘ , π‘šβŸ© ∣ (𝑠 ∈ 𝒫 (Baseβ€˜π‘š) ∧ βˆ€π‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m 𝑠)((𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)𝑠) = (0gβ€˜π‘š)) β†’ βˆ€π‘₯ ∈ 𝑠 (π‘“β€˜π‘₯) = (0gβ€˜(Scalarβ€˜π‘š))))}
Distinct variable group:   𝑓,π‘š,𝑠,π‘₯

Detailed syntax breakdown of Definition df-lininds
StepHypRef Expression
1 clininds 47111 . 2 class linIndS
2 vs . . . . . 6 setvar 𝑠
32cv 1540 . . . . 5 class 𝑠
4 vm . . . . . . . 8 setvar π‘š
54cv 1540 . . . . . . 7 class π‘š
6 cbs 17143 . . . . . . 7 class Base
75, 6cfv 6543 . . . . . 6 class (Baseβ€˜π‘š)
87cpw 4602 . . . . 5 class 𝒫 (Baseβ€˜π‘š)
93, 8wcel 2106 . . . 4 wff 𝑠 ∈ 𝒫 (Baseβ€˜π‘š)
10 vf . . . . . . . . 9 setvar 𝑓
1110cv 1540 . . . . . . . 8 class 𝑓
12 csca 17199 . . . . . . . . . 10 class Scalar
135, 12cfv 6543 . . . . . . . . 9 class (Scalarβ€˜π‘š)
14 c0g 17384 . . . . . . . . 9 class 0g
1513, 14cfv 6543 . . . . . . . 8 class (0gβ€˜(Scalarβ€˜π‘š))
16 cfsupp 9360 . . . . . . . 8 class finSupp
1711, 15, 16wbr 5148 . . . . . . 7 wff 𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š))
18 clinc 47075 . . . . . . . . . 10 class linC
195, 18cfv 6543 . . . . . . . . 9 class ( linC β€˜π‘š)
2011, 3, 19co 7408 . . . . . . . 8 class (𝑓( linC β€˜π‘š)𝑠)
215, 14cfv 6543 . . . . . . . 8 class (0gβ€˜π‘š)
2220, 21wceq 1541 . . . . . . 7 wff (𝑓( linC β€˜π‘š)𝑠) = (0gβ€˜π‘š)
2317, 22wa 396 . . . . . 6 wff (𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)𝑠) = (0gβ€˜π‘š))
24 vx . . . . . . . . . 10 setvar π‘₯
2524cv 1540 . . . . . . . . 9 class π‘₯
2625, 11cfv 6543 . . . . . . . 8 class (π‘“β€˜π‘₯)
2726, 15wceq 1541 . . . . . . 7 wff (π‘“β€˜π‘₯) = (0gβ€˜(Scalarβ€˜π‘š))
2827, 24, 3wral 3061 . . . . . 6 wff βˆ€π‘₯ ∈ 𝑠 (π‘“β€˜π‘₯) = (0gβ€˜(Scalarβ€˜π‘š))
2923, 28wi 4 . . . . 5 wff ((𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)𝑠) = (0gβ€˜π‘š)) β†’ βˆ€π‘₯ ∈ 𝑠 (π‘“β€˜π‘₯) = (0gβ€˜(Scalarβ€˜π‘š)))
3013, 6cfv 6543 . . . . . 6 class (Baseβ€˜(Scalarβ€˜π‘š))
31 cmap 8819 . . . . . 6 class ↑m
3230, 3, 31co 7408 . . . . 5 class ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m 𝑠)
3329, 10, 32wral 3061 . . . 4 wff βˆ€π‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m 𝑠)((𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)𝑠) = (0gβ€˜π‘š)) β†’ βˆ€π‘₯ ∈ 𝑠 (π‘“β€˜π‘₯) = (0gβ€˜(Scalarβ€˜π‘š)))
349, 33wa 396 . . 3 wff (𝑠 ∈ 𝒫 (Baseβ€˜π‘š) ∧ βˆ€π‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m 𝑠)((𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)𝑠) = (0gβ€˜π‘š)) β†’ βˆ€π‘₯ ∈ 𝑠 (π‘“β€˜π‘₯) = (0gβ€˜(Scalarβ€˜π‘š))))
3534, 2, 4copab 5210 . 2 class {βŸ¨π‘ , π‘šβŸ© ∣ (𝑠 ∈ 𝒫 (Baseβ€˜π‘š) ∧ βˆ€π‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m 𝑠)((𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)𝑠) = (0gβ€˜π‘š)) β†’ βˆ€π‘₯ ∈ 𝑠 (π‘“β€˜π‘₯) = (0gβ€˜(Scalarβ€˜π‘š))))}
361, 35wceq 1541 1 wff linIndS = {βŸ¨π‘ , π‘šβŸ© ∣ (𝑠 ∈ 𝒫 (Baseβ€˜π‘š) ∧ βˆ€π‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m 𝑠)((𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)𝑠) = (0gβ€˜π‘š)) β†’ βˆ€π‘₯ ∈ 𝑠 (π‘“β€˜π‘₯) = (0gβ€˜(Scalarβ€˜π‘š))))}
Colors of variables: wff setvar class
This definition is referenced by:  rellininds  47114  islininds  47117
  Copyright terms: Public domain W3C validator