Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rellininds Structured version   Visualization version   GIF version

Theorem rellininds 48554
Description: The class defining the relation between a module and its linearly independent subsets is a relation. (Contributed by AV, 13-Apr-2019.)
Assertion
Ref Expression
rellininds Rel linIndS

Proof of Theorem rellininds
Dummy variables 𝑓 𝑚 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lininds 48553 . 2 linIndS = {⟨𝑠, 𝑚⟩ ∣ (𝑠 ∈ 𝒫 (Base‘𝑚) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑠)((𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)𝑠) = (0g𝑚)) → ∀𝑥𝑠 (𝑓𝑥) = (0g‘(Scalar‘𝑚))))}
21relopabiv 5759 1 Rel linIndS
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  𝒫 cpw 4547   class class class wbr 5089  Rel wrel 5619  cfv 6481  (class class class)co 7346  m cmap 8750   finSupp cfsupp 9245  Basecbs 17120  Scalarcsca 17164  0gc0g 17343   linC clinc 48515   linIndS clininds 48551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-ss 3914  df-opab 5152  df-xp 5620  df-rel 5621  df-lininds 48553
This theorem is referenced by:  linindsv  48556
  Copyright terms: Public domain W3C validator