Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rellininds Structured version   Visualization version   GIF version

Theorem rellininds 45784
Description: The class defining the relation between a module and its linearly independent subsets is a relation. (Contributed by AV, 13-Apr-2019.)
Assertion
Ref Expression
rellininds Rel linIndS

Proof of Theorem rellininds
Dummy variables 𝑓 𝑚 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lininds 45783 . 2 linIndS = {⟨𝑠, 𝑚⟩ ∣ (𝑠 ∈ 𝒫 (Base‘𝑚) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑠)((𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)𝑠) = (0g𝑚)) → ∀𝑥𝑠 (𝑓𝑥) = (0g‘(Scalar‘𝑚))))}
21relopabiv 5730 1 Rel linIndS
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  𝒫 cpw 4533   class class class wbr 5074  Rel wrel 5594  cfv 6433  (class class class)co 7275  m cmap 8615   finSupp cfsupp 9128  Basecbs 16912  Scalarcsca 16965  0gc0g 17150   linC clinc 45745   linIndS clininds 45781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-ss 3904  df-opab 5137  df-xp 5595  df-rel 5596  df-lininds 45783
This theorem is referenced by:  linindsv  45786
  Copyright terms: Public domain W3C validator