Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rellininds Structured version   Visualization version   GIF version

Theorem rellininds 45202
Description: The class defining the relation between a module and its linearly independent subsets is a relation. (Contributed by AV, 13-Apr-2019.)
Assertion
Ref Expression
rellininds Rel linIndS

Proof of Theorem rellininds
Dummy variables 𝑓 𝑚 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lininds 45201 . 2 linIndS = {⟨𝑠, 𝑚⟩ ∣ (𝑠 ∈ 𝒫 (Base‘𝑚) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑠)((𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)𝑠) = (0g𝑚)) → ∀𝑥𝑠 (𝑓𝑥) = (0g‘(Scalar‘𝑚))))}
21relopabi 5656 1 Rel linIndS
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wcel 2112  wral 3068  𝒫 cpw 4487   class class class wbr 5025  Rel wrel 5522  cfv 6328  (class class class)co 7143  m cmap 8409   finSupp cfsupp 8851  Basecbs 16526  Scalarcsca 16611  0gc0g 16756   linC clinc 45163   linIndS clininds 45199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-11 2159  ax-12 2176  ax-ext 2730
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-ex 1783  df-sb 2071  df-clab 2737  df-cleq 2751  df-clel 2831  df-v 3409  df-un 3859  df-in 3861  df-ss 3871  df-sn 4516  df-pr 4518  df-op 4522  df-opab 5088  df-xp 5523  df-rel 5524  df-lininds 45201
This theorem is referenced by:  linindsv  45204
  Copyright terms: Public domain W3C validator