| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rellininds | Structured version Visualization version GIF version | ||
| Description: The class defining the relation between a module and its linearly independent subsets is a relation. (Contributed by AV, 13-Apr-2019.) |
| Ref | Expression |
|---|---|
| rellininds | ⊢ Rel linIndS |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lininds 48305 | . 2 ⊢ linIndS = {〈𝑠, 𝑚〉 ∣ (𝑠 ∈ 𝒫 (Base‘𝑚) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑠)((𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)𝑠) = (0g‘𝑚)) → ∀𝑥 ∈ 𝑠 (𝑓‘𝑥) = (0g‘(Scalar‘𝑚))))} | |
| 2 | 1 | relopabiv 5812 | 1 ⊢ Rel linIndS |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 𝒫 cpw 4582 class class class wbr 5125 Rel wrel 5672 ‘cfv 6542 (class class class)co 7414 ↑m cmap 8849 finSupp cfsupp 9384 Basecbs 17230 Scalarcsca 17280 0gc0g 17460 linC clinc 48267 linIndS clininds 48303 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3466 df-ss 3950 df-opab 5188 df-xp 5673 df-rel 5674 df-lininds 48305 |
| This theorem is referenced by: linindsv 48308 |
| Copyright terms: Public domain | W3C validator |