Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rellininds Structured version   Visualization version   GIF version

Theorem rellininds 48306
Description: The class defining the relation between a module and its linearly independent subsets is a relation. (Contributed by AV, 13-Apr-2019.)
Assertion
Ref Expression
rellininds Rel linIndS

Proof of Theorem rellininds
Dummy variables 𝑓 𝑚 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lininds 48305 . 2 linIndS = {⟨𝑠, 𝑚⟩ ∣ (𝑠 ∈ 𝒫 (Base‘𝑚) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑠)((𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)𝑠) = (0g𝑚)) → ∀𝑥𝑠 (𝑓𝑥) = (0g‘(Scalar‘𝑚))))}
21relopabiv 5812 1 Rel linIndS
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3050  𝒫 cpw 4582   class class class wbr 5125  Rel wrel 5672  cfv 6542  (class class class)co 7414  m cmap 8849   finSupp cfsupp 9384  Basecbs 17230  Scalarcsca 17280  0gc0g 17460   linC clinc 48267   linIndS clininds 48303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-v 3466  df-ss 3950  df-opab 5188  df-xp 5673  df-rel 5674  df-lininds 48305
This theorem is referenced by:  linindsv  48308
  Copyright terms: Public domain W3C validator