| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rellininds | Structured version Visualization version GIF version | ||
| Description: The class defining the relation between a module and its linearly independent subsets is a relation. (Contributed by AV, 13-Apr-2019.) |
| Ref | Expression |
|---|---|
| rellininds | ⊢ Rel linIndS |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lininds 48553 | . 2 ⊢ linIndS = {〈𝑠, 𝑚〉 ∣ (𝑠 ∈ 𝒫 (Base‘𝑚) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑠)((𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)𝑠) = (0g‘𝑚)) → ∀𝑥 ∈ 𝑠 (𝑓‘𝑥) = (0g‘(Scalar‘𝑚))))} | |
| 2 | 1 | relopabiv 5759 | 1 ⊢ Rel linIndS |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 𝒫 cpw 4547 class class class wbr 5089 Rel wrel 5619 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 finSupp cfsupp 9245 Basecbs 17120 Scalarcsca 17164 0gc0g 17343 linC clinc 48515 linIndS clininds 48551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-opab 5152 df-xp 5620 df-rel 5621 df-lininds 48553 |
| This theorem is referenced by: linindsv 48556 |
| Copyright terms: Public domain | W3C validator |