| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rellininds | Structured version Visualization version GIF version | ||
| Description: The class defining the relation between a module and its linearly independent subsets is a relation. (Contributed by AV, 13-Apr-2019.) |
| Ref | Expression |
|---|---|
| rellininds | ⊢ Rel linIndS |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lininds 48431 | . 2 ⊢ linIndS = {〈𝑠, 𝑚〉 ∣ (𝑠 ∈ 𝒫 (Base‘𝑚) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑠)((𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)𝑠) = (0g‘𝑚)) → ∀𝑥 ∈ 𝑠 (𝑓‘𝑥) = (0g‘(Scalar‘𝑚))))} | |
| 2 | 1 | relopabiv 5783 | 1 ⊢ Rel linIndS |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 𝒫 cpw 4563 class class class wbr 5107 Rel wrel 5643 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 finSupp cfsupp 9312 Basecbs 17179 Scalarcsca 17223 0gc0g 17402 linC clinc 48393 linIndS clininds 48429 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-opab 5170 df-xp 5644 df-rel 5645 df-lininds 48431 |
| This theorem is referenced by: linindsv 48434 |
| Copyright terms: Public domain | W3C validator |