Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rellininds | Structured version Visualization version GIF version |
Description: The class defining the relation between a module and its linearly independent subsets is a relation. (Contributed by AV, 13-Apr-2019.) |
Ref | Expression |
---|---|
rellininds | ⊢ Rel linIndS |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lininds 45201 | . 2 ⊢ linIndS = {〈𝑠, 𝑚〉 ∣ (𝑠 ∈ 𝒫 (Base‘𝑚) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑠)((𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)𝑠) = (0g‘𝑚)) → ∀𝑥 ∈ 𝑠 (𝑓‘𝑥) = (0g‘(Scalar‘𝑚))))} | |
2 | 1 | relopabi 5656 | 1 ⊢ Rel linIndS |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ∀wral 3068 𝒫 cpw 4487 class class class wbr 5025 Rel wrel 5522 ‘cfv 6328 (class class class)co 7143 ↑m cmap 8409 finSupp cfsupp 8851 Basecbs 16526 Scalarcsca 16611 0gc0g 16756 linC clinc 45163 linIndS clininds 45199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-11 2159 ax-12 2176 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-v 3409 df-un 3859 df-in 3861 df-ss 3871 df-sn 4516 df-pr 4518 df-op 4522 df-opab 5088 df-xp 5523 df-rel 5524 df-lininds 45201 |
This theorem is referenced by: linindsv 45204 |
Copyright terms: Public domain | W3C validator |