![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rellininds | Structured version Visualization version GIF version |
Description: The class defining the relation between a module and its linearly independent subsets is a relation. (Contributed by AV, 13-Apr-2019.) |
Ref | Expression |
---|---|
rellininds | ⊢ Rel linIndS |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lininds 48288 | . 2 ⊢ linIndS = {〈𝑠, 𝑚〉 ∣ (𝑠 ∈ 𝒫 (Base‘𝑚) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑠)((𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)𝑠) = (0g‘𝑚)) → ∀𝑥 ∈ 𝑠 (𝑓‘𝑥) = (0g‘(Scalar‘𝑚))))} | |
2 | 1 | relopabiv 5833 | 1 ⊢ Rel linIndS |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 𝒫 cpw 4605 class class class wbr 5148 Rel wrel 5694 ‘cfv 6563 (class class class)co 7431 ↑m cmap 8865 finSupp cfsupp 9399 Basecbs 17245 Scalarcsca 17301 0gc0g 17486 linC clinc 48250 linIndS clininds 48286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-ss 3980 df-opab 5211 df-xp 5695 df-rel 5696 df-lininds 48288 |
This theorem is referenced by: linindsv 48291 |
Copyright terms: Public domain | W3C validator |