| Metamath
Proof Explorer Theorem List (p. 477 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30909) |
(30910-32432) |
(32433-49920) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | prsprel 47601 | The elements of a pair from the set of all unordered pairs over a given set 𝑉 are elements of the set 𝑉. (Contributed by AV, 22-Nov-2021.) |
| ⊢ (({𝑋, 𝑌} ∈ (Pairs‘𝑉) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑊)) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) | ||
| Theorem | prsssprel 47602 | The elements of a pair from a subset of the set of all unordered pairs over a given set 𝑉 are elements of the set 𝑉. (Contributed by AV, 21-Nov-2021.) |
| ⊢ ((𝑃 ⊆ (Pairs‘𝑉) ∧ {𝑋, 𝑌} ∈ 𝑃 ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑊)) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) | ||
| Theorem | sprvalpwle2 47603* | The set of all unordered pairs over a given set 𝑉, expressed by a restricted class abstraction. (Contributed by AV, 24-Nov-2021.) |
| ⊢ (𝑉 ∈ 𝑊 → (Pairs‘𝑉) = {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}) | ||
| Theorem | sprsymrelfvlem 47604* | Lemma for sprsymrelf 47609 and sprsymrelfv 47608. (Contributed by AV, 19-Nov-2021.) |
| ⊢ (𝑃 ⊆ (Pairs‘𝑉) → {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉)) | ||
| Theorem | sprsymrelf1lem 47605* | Lemma for sprsymrelf1 47610. (Contributed by AV, 22-Nov-2021.) |
| ⊢ ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) → ({〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑎 𝑐 = {𝑥, 𝑦}} = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑏 𝑐 = {𝑥, 𝑦}} → 𝑎 ⊆ 𝑏)) | ||
| Theorem | sprsymrelfolem1 47606* | Lemma 1 for sprsymrelfo 47611. (Contributed by AV, 22-Nov-2021.) |
| ⊢ 𝑄 = {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} ⇒ ⊢ 𝑄 ∈ 𝒫 (Pairs‘𝑉) | ||
| Theorem | sprsymrelfolem2 47607* | Lemma 2 for sprsymrelfo 47611. (Contributed by AV, 23-Nov-2021.) |
| ⊢ 𝑄 = {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} ⇒ ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥)) → (𝑥𝑅𝑦 ↔ ∃𝑐 ∈ 𝑄 𝑐 = {𝑥, 𝑦})) | ||
| Theorem | sprsymrelfv 47608* | The value of the function 𝐹 which maps a subset of the set of pairs over a fixed set 𝑉 to the relation relating two elements of the set 𝑉 iff they are in a pair of the subset. (Contributed by AV, 19-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ⇒ ⊢ (𝑋 ∈ 𝑃 → (𝐹‘𝑋) = {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑋 𝑐 = {𝑥, 𝑦}}) | ||
| Theorem | sprsymrelf 47609* | The mapping 𝐹 is a function from the subsets of the set of pairs over a fixed set 𝑉 into the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 19-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ⇒ ⊢ 𝐹:𝑃⟶𝑅 | ||
| Theorem | sprsymrelf1 47610* | The mapping 𝐹 is a one-to-one function from the subsets of the set of pairs over a fixed set 𝑉 into the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 19-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ⇒ ⊢ 𝐹:𝑃–1-1→𝑅 | ||
| Theorem | sprsymrelfo 47611* | The mapping 𝐹 is a function from the subsets of the set of pairs over a fixed set 𝑉 onto the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 23-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝐹:𝑃–onto→𝑅) | ||
| Theorem | sprsymrelf1o 47612* | The mapping 𝐹 is a bijection between the subsets of the set of pairs over a fixed set 𝑉 into the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 23-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝐹:𝑃–1-1-onto→𝑅) | ||
| Theorem | sprbisymrel 47613* | There is a bijection between the subsets of the set of pairs over a fixed set 𝑉 and the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 23-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} ⇒ ⊢ (𝑉 ∈ 𝑊 → ∃𝑓 𝑓:𝑃–1-1-onto→𝑅) | ||
| Theorem | sprsymrelen 47614* | The class 𝑃 of subsets of the set of pairs over a fixed set 𝑉 and the class 𝑅 of symmetric relations on the fixed set 𝑉 are equinumerous. (Contributed by AV, 27-Nov-2021.) |
| ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝑃 ≈ 𝑅) | ||
Proper (unordered) pairs are unordered pairs with exactly 2 elements. The set of proper pairs with elements of a class 𝑉 is defined by {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}. For example, {1, 2} is a proper pair, because 1 ≠ 2 ( see 1ne2 12338). Examples for not proper unordered pairs are {1, 1} = {1} (see preqsn 4815), {1, V} = {1} (see prprc2 4720) or {V, V} = ∅ (see prprc 4721). | ||
| Theorem | prpair 47615* | Characterization of a proper pair: A class is a proper pair iff it consists of exactly two different sets. (Contributed by AV, 11-Mar-2023.) |
| ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⇒ ⊢ (𝑋 ∈ 𝑃 ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) | ||
| Theorem | prproropf1olem0 47616 | Lemma 0 for prproropf1o 47621. Remark: 𝑂, the set of ordered ordered pairs, i.e., ordered pairs in which the first component is less than the second component, can alternatively be written as 𝑂 = {𝑥 ∈ (𝑉 × 𝑉) ∣ (1st ‘𝑥)𝑅(2nd ‘𝑥)} or even as 𝑂 = {𝑥 ∈ (𝑉 × 𝑉) ∣ 〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈ 𝑅}, by which the relationship between ordered and unordered pair is immediately visible. (Contributed by AV, 18-Mar-2023.) |
| ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) ⇒ ⊢ (𝑊 ∈ 𝑂 ↔ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) | ||
| Theorem | prproropf1olem1 47617* | Lemma 1 for prproropf1o 47621. (Contributed by AV, 12-Mar-2023.) |
| ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) & ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} ⇒ ⊢ ((𝑅 Or 𝑉 ∧ 𝑊 ∈ 𝑂) → {(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝑃) | ||
| Theorem | prproropf1olem2 47618* | Lemma 2 for prproropf1o 47621. (Contributed by AV, 13-Mar-2023.) |
| ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) & ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} ⇒ ⊢ ((𝑅 Or 𝑉 ∧ 𝑋 ∈ 𝑃) → 〈inf(𝑋, 𝑉, 𝑅), sup(𝑋, 𝑉, 𝑅)〉 ∈ 𝑂) | ||
| Theorem | prproropf1olem3 47619* | Lemma 3 for prproropf1o 47621. (Contributed by AV, 13-Mar-2023.) |
| ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) & ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉) ⇒ ⊢ ((𝑅 Or 𝑉 ∧ 𝑊 ∈ 𝑂) → (𝐹‘{(1st ‘𝑊), (2nd ‘𝑊)}) = 〈(1st ‘𝑊), (2nd ‘𝑊)〉) | ||
| Theorem | prproropf1olem4 47620* | Lemma 4 for prproropf1o 47621. (Contributed by AV, 14-Mar-2023.) |
| ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) & ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉) ⇒ ⊢ ((𝑅 Or 𝑉 ∧ 𝑊 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃) → ((𝐹‘𝑍) = (𝐹‘𝑊) → 𝑍 = 𝑊)) | ||
| Theorem | prproropf1o 47621* | There is a bijection between the set of proper pairs and the set of ordered ordered pairs, i.e., ordered pairs in which the first component is less than the second component. (Contributed by AV, 15-Mar-2023.) |
| ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) & ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} & ⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉) ⇒ ⊢ (𝑅 Or 𝑉 → 𝐹:𝑃–1-1-onto→𝑂) | ||
| Theorem | prproropen 47622* | The set of proper pairs and the set of ordered ordered pairs, i.e., ordered pairs in which the first component is less than the second component, are equinumerous. (Contributed by AV, 15-Mar-2023.) |
| ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) & ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} ⇒ ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑅 Or 𝑉) → 𝑂 ≈ 𝑃) | ||
| Theorem | prproropreud 47623* | There is exactly one ordered ordered pair fulfilling a wff iff there is exactly one proper pair fulfilling an equivalent wff. (Contributed by AV, 20-Mar-2023.) |
| ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) & ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} & ⊢ (𝜑 → 𝑅 Or 𝑉) & ⊢ (𝑥 = 〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑧 → (𝜓 ↔ 𝜃)) ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ 𝑂 𝜓 ↔ ∃!𝑦 ∈ 𝑃 𝜒)) | ||
| Theorem | pairreueq 47624* | Two equivalent representations of the existence of a unique proper pair. (Contributed by AV, 1-Mar-2023.) |
| ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⇒ ⊢ (∃!𝑝 ∈ 𝑃 𝜑 ↔ ∃!𝑝 ∈ 𝒫 𝑉((♯‘𝑝) = 2 ∧ 𝜑)) | ||
| Theorem | paireqne 47625* | Two sets are not equal iff there is exactly one proper pair whose elements are either one of these sets. (Contributed by AV, 27-Jan-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⇒ ⊢ (𝜑 → (∃!𝑝 ∈ 𝑃 ∀𝑥 ∈ 𝑝 (𝑥 = 𝐴 ∨ 𝑥 = 𝐵) ↔ 𝐴 ≠ 𝐵)) | ||
| Syntax | cprpr 47626 | Extend class notation with set of proper unordered pairs. |
| class Pairsproper | ||
| Definition | df-prpr 47627* | Define the function which maps a set 𝑣 to the set of proper unordered pairs consisting of exactly two (different) elements of the set 𝑣. (Contributed by AV, 29-Apr-2023.) |
| ⊢ Pairsproper = (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})}) | ||
| Theorem | prprval 47628* | The set of all proper unordered pairs over a given set 𝑉. (Contributed by AV, 29-Apr-2023.) |
| ⊢ (𝑉 ∈ 𝑊 → (Pairsproper‘𝑉) = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})}) | ||
| Theorem | prprvalpw 47629* | The set of all proper unordered pairs over a given set 𝑉, expressed by a restricted class abstraction. (Contributed by AV, 29-Apr-2023.) |
| ⊢ (𝑉 ∈ 𝑊 → (Pairsproper‘𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})}) | ||
| Theorem | prprelb 47630 | An element of the set of all proper unordered pairs over a given set 𝑉 is a subset of 𝑉 of size two. (Contributed by AV, 29-Apr-2023.) |
| ⊢ (𝑉 ∈ 𝑊 → (𝑃 ∈ (Pairsproper‘𝑉) ↔ (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2))) | ||
| Theorem | prprelprb 47631* | A set is an element of the set of all proper unordered pairs over a given set 𝑋 iff it is a pair of different elements of the set 𝑋. (Contributed by AV, 7-May-2023.) |
| ⊢ (𝑃 ∈ (Pairsproper‘𝑋) ↔ (𝑋 ∈ V ∧ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏))) | ||
| Theorem | prprspr2 47632* | The set of all proper unordered pairs over a given set 𝑉 is the set of all unordered pairs over that set of size two. (Contributed by AV, 29-Apr-2023.) |
| ⊢ (Pairsproper‘𝑉) = {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2} | ||
| Theorem | prprsprreu 47633* | There is a unique proper unordered pair over a given set 𝑉 fulfilling a wff iff there is a unique unordered pair over 𝑉 of size two fulfilling this wff. (Contributed by AV, 30-Apr-2023.) |
| ⊢ (𝑉 ∈ 𝑊 → (∃!𝑝 ∈ (Pairsproper‘𝑉)𝜑 ↔ ∃!𝑝 ∈ (Pairs‘𝑉)((♯‘𝑝) = 2 ∧ 𝜑))) | ||
| Theorem | prprreueq 47634* | There is a unique proper unordered pair over a given set 𝑉 fulfilling a wff iff there is a unique subset of 𝑉 of size two fulfilling this wff. (Contributed by AV, 29-Apr-2023.) |
| ⊢ (𝑉 ∈ 𝑊 → (∃!𝑝 ∈ (Pairsproper‘𝑉)𝜑 ↔ ∃!𝑝 ∈ 𝒫 𝑉((♯‘𝑝) = 2 ∧ 𝜑))) | ||
| Theorem | sbcpr 47635* | The proper substitution of an unordered pair for a setvar variable corresponds to a proper substitution of each of its elements. (Contributed by AV, 7-Apr-2023.) |
| ⊢ (𝑝 = {𝑥, 𝑦} → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([{𝑎, 𝑏} / 𝑝]𝜑 ↔ [𝑏 / 𝑦][𝑎 / 𝑥]𝜓) | ||
| Theorem | reupr 47636* | There is a unique unordered pair fulfilling a wff iff there are uniquely two sets fulfilling a corresponding wff. (Contributed by AV, 7-Apr-2023.) |
| ⊢ (𝑝 = {𝑎, 𝑏} → (𝜓 ↔ 𝜒)) & ⊢ (𝑝 = {𝑥, 𝑦} → (𝜓 ↔ 𝜃)) ⇒ ⊢ (𝑋 ∈ 𝑉 → (∃!𝑝 ∈ (Pairs‘𝑋)𝜓 ↔ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})))) | ||
| Theorem | reuprpr 47637* | There is a unique proper unordered pair fulfilling a wff iff there are uniquely two different sets fulfilling a corresponding wff. (Contributed by AV, 30-Apr-2023.) |
| ⊢ (𝑝 = {𝑎, 𝑏} → (𝜓 ↔ 𝜒)) & ⊢ (𝑝 = {𝑥, 𝑦} → (𝜓 ↔ 𝜃)) ⇒ ⊢ (𝑋 ∈ 𝑉 → (∃!𝑝 ∈ (Pairsproper‘𝑋)𝜓 ↔ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 ≠ 𝑦 ∧ 𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})))) | ||
| Theorem | poprelb 47638 | Equality for unordered pairs with partially ordered elements. (Contributed by AV, 9-Jul-2023.) |
| ⊢ (((Rel 𝑅 ∧ 𝑅 Po 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑅𝐵 ∧ 𝐶𝑅𝐷)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
| Theorem | 2exopprim 47639 | The existence of an ordered pair fulfilling a wff implies the existence of an unordered pair fulfilling the wff. (Contributed by AV, 29-Jul-2023.) |
| ⊢ (∃𝑎∃𝑏(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ 𝜑) → ∃𝑎∃𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ 𝜑)) | ||
| Theorem | reuopreuprim 47640* | There is a unique unordered pair with ordered elements fulfilling a wff if there is a unique ordered pair fulfilling the wff. (Contributed by AV, 28-Jul-2023.) |
| ⊢ (𝑋 ∈ 𝑉 → (∃!𝑝 ∈ (𝑋 × 𝑋)∃𝑎∃𝑏(𝑝 = 〈𝑎, 𝑏〉 ∧ 𝜑) → ∃!𝑝 ∈ (Pairs‘𝑋)∃𝑎∃𝑏(𝑝 = {𝑎, 𝑏} ∧ 𝜑))) | ||
At first, the (sequence of) Fermat numbers FermatNo (the 𝑛-th Fermat number is denoted as (FermatNo‘𝑛)) is defined, see df-fmtno 47642, and basic theorems are provided. Afterwards, it is shown that the first five Fermat numbers are prime, the (first) five Fermat primes, see fmtnofz04prm 47691, but that the fifth Fermat number (counting starts at 0!) is not prime, see fmtno5nprm 47697. The fourth Fermat number (i.e., the fifth Fermat prime) (FermatNo‘4) = ;;;;65537 is currently the biggest number proven to be prime in set.mm, see 65537prm 47690 (previously, it was ;;;4001, see 4001prm 17066). Another important result of this section is Goldbach's theorem goldbachth 47661, showing that two different Fermut numbers are coprime. By this, it can be proven that there is an infinite number of primes, see prminf2 47702. Finally, it is shown that every prime of the form ((2↑𝑘) + 1) must be a Fermat number (i.e., a Fermat prime), see 2pwp1prmfmtno 47704. | ||
| Syntax | cfmtno 47641 | Extend class notation with the Fermat numbers. |
| class FermatNo | ||
| Definition | df-fmtno 47642 | Define the function that enumerates the Fermat numbers, see definition in [ApostolNT] p. 7. (Contributed by AV, 13-Jun-2021.) |
| ⊢ FermatNo = (𝑛 ∈ ℕ0 ↦ ((2↑(2↑𝑛)) + 1)) | ||
| Theorem | fmtno 47643 | The 𝑁 th Fermat number. (Contributed by AV, 13-Jun-2021.) |
| ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1)) | ||
| Theorem | fmtnoge3 47644 | Each Fermat number is greater than or equal to 3. (Contributed by AV, 4-Aug-2021.) |
| ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ (ℤ≥‘3)) | ||
| Theorem | fmtnonn 47645 | Each Fermat number is a positive integer. (Contributed by AV, 26-Jul-2021.) (Proof shortened by AV, 4-Aug-2021.) |
| ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℕ) | ||
| Theorem | fmtnom1nn 47646 | A Fermat number minus one is a power of a power of two. (Contributed by AV, 29-Jul-2021.) |
| ⊢ (𝑁 ∈ ℕ0 → ((FermatNo‘𝑁) − 1) = (2↑(2↑𝑁))) | ||
| Theorem | fmtnoodd 47647 | Each Fermat number is odd. (Contributed by AV, 26-Jul-2021.) |
| ⊢ (𝑁 ∈ ℕ0 → ¬ 2 ∥ (FermatNo‘𝑁)) | ||
| Theorem | fmtnorn 47648* | A Fermat number is a function value of the enumeration of the Fermat numbers. (Contributed by AV, 3-Aug-2021.) |
| ⊢ (𝐹 ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝐹) | ||
| Theorem | fmtnof1 47649 | The enumeration of the Fermat numbers is a one-one function into the positive integers. (Contributed by AV, 3-Aug-2021.) |
| ⊢ FermatNo:ℕ0–1-1→ℕ | ||
| Theorem | fmtnoinf 47650 | The set of Fermat numbers is infinite. (Contributed by AV, 3-Aug-2021.) |
| ⊢ ran FermatNo ∉ Fin | ||
| Theorem | fmtnorec1 47651 | The first recurrence relation for Fermat numbers, see Wikipedia "Fermat number", https://en.wikipedia.org/wiki/Fermat_number#Basic_properties, 22-Jul-2021. (Contributed by AV, 22-Jul-2021.) |
| ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = ((((FermatNo‘𝑁) − 1)↑2) + 1)) | ||
| Theorem | sqrtpwpw2p 47652 | The floor of the square root of 2 to the power of 2 to the power of a positive integer plus a bounded nonnegative integer. (Contributed by AV, 28-Jul-2021.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (⌊‘(√‘((2↑(2↑𝑁)) + 𝑀))) = (2↑(2↑(𝑁 − 1)))) | ||
| Theorem | fmtnosqrt 47653 | The floor of the square root of a Fermat number. (Contributed by AV, 28-Jul-2021.) |
| ⊢ (𝑁 ∈ ℕ → (⌊‘(√‘(FermatNo‘𝑁))) = (2↑(2↑(𝑁 − 1)))) | ||
| Theorem | fmtno0 47654 | The 0 th Fermat number, see remark in [ApostolNT] p. 7. (Contributed by AV, 13-Jun-2021.) |
| ⊢ (FermatNo‘0) = 3 | ||
| Theorem | fmtno1 47655 | The 1 st Fermat number, see remark in [ApostolNT] p. 7. (Contributed by AV, 13-Jun-2021.) |
| ⊢ (FermatNo‘1) = 5 | ||
| Theorem | fmtnorec2lem 47656* | Lemma for fmtnorec2 47657 (induction step). (Contributed by AV, 29-Jul-2021.) |
| ⊢ (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → (FermatNo‘((𝑦 + 1) + 1)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))) | ||
| Theorem | fmtnorec2 47657* | The second recurrence relation for Fermat numbers, see ProofWiki "Product of Sequence of Fermat Numbers plus 2", 29-Jul-2021, https://proofwiki.org/wiki/Product_of_Sequence_of_Fermat_Numbers_plus_2 or Wikipedia "Fermat number", 29-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties. (Contributed by AV, 29-Jul-2021.) |
| ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = (∏𝑛 ∈ (0...𝑁)(FermatNo‘𝑛) + 2)) | ||
| Theorem | fmtnodvds 47658 | Any Fermat number divides a greater Fermat number minus 2. Corollary of fmtnorec2 47657, see ProofWiki "Product of Sequence of Fermat Numbers plus 2/Corollary", 31-Jul-2021. (Contributed by AV, 1-Aug-2021.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ) → (FermatNo‘𝑁) ∥ ((FermatNo‘(𝑁 + 𝑀)) − 2)) | ||
| Theorem | goldbachthlem1 47659 | Lemma 1 for goldbachth 47661. (Contributed by AV, 1-Aug-2021.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁) → (FermatNo‘𝑀) ∥ ((FermatNo‘𝑁) − 2)) | ||
| Theorem | goldbachthlem2 47660 | Lemma 2 for goldbachth 47661. (Contributed by AV, 1-Aug-2021.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1) | ||
| Theorem | goldbachth 47661 | Goldbach's theorem: Two different Fermat numbers are coprime. See ProofWiki "Goldbach's theorem", 31-Jul-2021, https://proofwiki.org/wiki/Goldbach%27s_Theorem or Wikipedia "Fermat number", 31-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties. (Contributed by AV, 1-Aug-2021.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ≠ 𝑀) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1) | ||
| Theorem | fmtnorec3 47662* | The third recurrence relation for Fermat numbers, see Wikipedia "Fermat number", 31-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties. (Contributed by AV, 2-Aug-2021.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) → (FermatNo‘𝑁) = ((FermatNo‘(𝑁 − 1)) + ((2↑(2↑(𝑁 − 1))) · ∏𝑛 ∈ (0...(𝑁 − 2))(FermatNo‘𝑛)))) | ||
| Theorem | fmtnorec4 47663 | The fourth recurrence relation for Fermat numbers, see Wikipedia "Fermat number", 31-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties. (Contributed by AV, 31-Jul-2021.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) → (FermatNo‘𝑁) = (((FermatNo‘(𝑁 − 1))↑2) − (2 · (((FermatNo‘(𝑁 − 2)) − 1)↑2)))) | ||
| Theorem | fmtno2 47664 | The 2 nd Fermat number, see remark in [ApostolNT] p. 7. (Contributed by AV, 13-Jun-2021.) |
| ⊢ (FermatNo‘2) = ;17 | ||
| Theorem | fmtno3 47665 | The 3 rd Fermat number, see remark in [ApostolNT] p. 7. (Contributed by AV, 13-Jun-2021.) |
| ⊢ (FermatNo‘3) = ;;257 | ||
| Theorem | fmtno4 47666 | The 4 th Fermat number, see remark in [ApostolNT] p. 7. (Contributed by AV, 13-Jun-2021.) |
| ⊢ (FermatNo‘4) = ;;;;65537 | ||
| Theorem | fmtno5lem1 47667 | Lemma 1 for fmtno5 47671. (Contributed by AV, 22-Jul-2021.) |
| ⊢ (;;;;65536 · 6) = ;;;;;393216 | ||
| Theorem | fmtno5lem2 47668 | Lemma 2 for fmtno5 47671. (Contributed by AV, 22-Jul-2021.) |
| ⊢ (;;;;65536 · 5) = ;;;;;327680 | ||
| Theorem | fmtno5lem3 47669 | Lemma 3 for fmtno5 47671. (Contributed by AV, 22-Jul-2021.) |
| ⊢ (;;;;65536 · 3) = ;;;;;196608 | ||
| Theorem | fmtno5lem4 47670 | Lemma 4 for fmtno5 47671. (Contributed by AV, 30-Jul-2021.) |
| ⊢ (;;;;65536↑2) = ;;;;;;;;;4294967296 | ||
| Theorem | fmtno5 47671 | The 5 th Fermat number. (Contributed by AV, 30-Jul-2021.) |
| ⊢ (FermatNo‘5) = ;;;;;;;;;4294967297 | ||
| Theorem | fmtno0prm 47672 | The 0 th Fermat number is a prime (first Fermat prime). (Contributed by AV, 13-Jun-2021.) |
| ⊢ (FermatNo‘0) ∈ ℙ | ||
| Theorem | fmtno1prm 47673 | The 1 st Fermat number is a prime (second Fermat prime). (Contributed by AV, 13-Jun-2021.) |
| ⊢ (FermatNo‘1) ∈ ℙ | ||
| Theorem | fmtno2prm 47674 | The 2 nd Fermat number is a prime (third Fermat prime). (Contributed by AV, 13-Jun-2021.) |
| ⊢ (FermatNo‘2) ∈ ℙ | ||
| Theorem | 257prm 47675 | 257 is a prime number (the fourth Fermat prime). (Contributed by AV, 15-Jun-2021.) |
| ⊢ ;;257 ∈ ℙ | ||
| Theorem | fmtno3prm 47676 | The 3 rd Fermat number is a prime (fourth Fermat prime). (Contributed by AV, 15-Jun-2021.) |
| ⊢ (FermatNo‘3) ∈ ℙ | ||
| Theorem | odz2prm2pw 47677 | Any power of two is coprime to any prime not being two. (Contributed by AV, 25-Jul-2021.) |
| ⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1)) → ((odℤ‘𝑃)‘2) = (2↑(𝑁 + 1))) | ||
| Theorem | fmtnoprmfac1lem 47678 | Lemma for fmtnoprmfac1 47679: The order of 2 modulo a prime that divides the n-th Fermat number is 2^(n+1). (Contributed by AV, 25-Jul-2021.) (Proof shortened by AV, 18-Mar-2022.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((odℤ‘𝑃)‘2) = (2↑(𝑁 + 1))) | ||
| Theorem | fmtnoprmfac1 47679* | Divisor of Fermat number (special form of Euler's result, see fmtnofac1 47684): Let Fn be a Fermat number. Let p be a prime divisor of Fn. Then p is in the form: k*2^(n+1)+1 where k is a positive integer. (Contributed by AV, 25-Jul-2021.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)) | ||
| Theorem | fmtnoprmfac2lem1 47680 | Lemma for fmtnoprmfac2 47681. (Contributed by AV, 26-Jul-2021.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1) | ||
| Theorem | fmtnoprmfac2 47681* | Divisor of Fermat number (special form of Lucas' result, see fmtnofac2 47683): Let Fn be a Fermat number. Let p be a prime divisor of Fn. Then p is in the form: k*2^(n+2)+1 where k is a positive integer. (Contributed by AV, 26-Jul-2021.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) | ||
| Theorem | fmtnofac2lem 47682* | Lemma for fmtnofac2 47683 (Induction step). (Contributed by AV, 30-Jul-2021.) |
| ⊢ ((𝑦 ∈ (ℤ≥‘2) ∧ 𝑧 ∈ (ℤ≥‘2)) → ((((𝑁 ∈ (ℤ≥‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ((𝑁 ∈ (ℤ≥‘2) ∧ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))) | ||
| Theorem | fmtnofac2 47683* | Divisor of Fermat number (Euler's Result refined by François Édouard Anatole Lucas), see fmtnofac1 47684: Let Fn be a Fermat number. Let m be divisor of Fn. Then m is in the form: k*2^(n+2)+1 where k is a nonnegative integer. (Contributed by AV, 30-Jul-2021.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) | ||
| Theorem | fmtnofac1 47684* |
Divisor of Fermat number (Euler's Result), see ProofWiki "Divisor of
Fermat Number/Euler's Result", 24-Jul-2021,
https://proofwiki.org/wiki/Divisor_of_Fermat_Number/Euler's_Result):
"Let Fn be a Fermat number. Let
m be divisor of Fn. Then m is in the
form: k*2^(n+1)+1 where k is a positive integer." Here, however, k
must
be a nonnegative integer, because k must be 0 to represent 1 (which is a
divisor of Fn ).
Historical Note: In 1747, Leonhard Paul Euler proved that a divisor of a Fermat number Fn is always in the form kx2^(n+1)+1. This was later refined to k*2^(n+2)+1 by François Édouard Anatole Lucas, see fmtnofac2 47683. (Contributed by AV, 30-Jul-2021.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1)) | ||
| Theorem | fmtno4sqrt 47685 | The floor of the square root of the fourth Fermat number is 256. (Contributed by AV, 28-Jul-2021.) |
| ⊢ (⌊‘(√‘(FermatNo‘4))) = ;;256 | ||
| Theorem | fmtno4prmfac 47686 | If P was a (prime) factor of the fourth Fermat number less than the square root of the fourth Fermat number, it would be either 65 or 129 or 193. (Contributed by AV, 28-Jul-2021.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → (𝑃 = ;65 ∨ 𝑃 = ;;129 ∨ 𝑃 = ;;193)) | ||
| Theorem | fmtno4prmfac193 47687 | If P was a (prime) factor of the fourth Fermat number, it would be 193. (Contributed by AV, 28-Jul-2021.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → 𝑃 = ;;193) | ||
| Theorem | fmtno4nprmfac193 47688 | 193 is not a (prime) factor of the fourth Fermat number. (Contributed by AV, 24-Jul-2021.) |
| ⊢ ¬ ;;193 ∥ (FermatNo‘4) | ||
| Theorem | fmtno4prm 47689 | The 4-th Fermat number (65537) is a prime (the fifth Fermat prime). (Contributed by AV, 28-Jul-2021.) |
| ⊢ (FermatNo‘4) ∈ ℙ | ||
| Theorem | 65537prm 47690 | 65537 is a prime number (the fifth Fermat prime). (Contributed by AV, 28-Jul-2021.) |
| ⊢ ;;;;65537 ∈ ℙ | ||
| Theorem | fmtnofz04prm 47691 | The first five Fermat numbers are prime, see remark in [ApostolNT] p. 7. (Contributed by AV, 28-Jul-2021.) |
| ⊢ (𝑁 ∈ (0...4) → (FermatNo‘𝑁) ∈ ℙ) | ||
| Theorem | fmtnole4prm 47692 | The first five Fermat numbers are prime. (Contributed by AV, 28-Jul-2021.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 4) → (FermatNo‘𝑁) ∈ ℙ) | ||
| Theorem | fmtno5faclem1 47693 | Lemma 1 for fmtno5fac 47696. (Contributed by AV, 22-Jul-2021.) |
| ⊢ (;;;;;;6700417 · 4) = ;;;;;;;26801668 | ||
| Theorem | fmtno5faclem2 47694 | Lemma 2 for fmtno5fac 47696. (Contributed by AV, 22-Jul-2021.) |
| ⊢ (;;;;;;6700417 · 6) = ;;;;;;;40202502 | ||
| Theorem | fmtno5faclem3 47695 | Lemma 3 for fmtno5fac 47696. (Contributed by AV, 22-Jul-2021.) |
| ⊢ (;;;;;;;;402025020 + ;;;;;;;26801668) = ;;;;;;;;428826688 | ||
| Theorem | fmtno5fac 47696 | The factorization of the 5 th Fermat number, see remark in [ApostolNT] p. 7. (Contributed by AV, 22-Jul-2021.) |
| ⊢ (FermatNo‘5) = (;;;;;;6700417 · ;;641) | ||
| Theorem | fmtno5nprm 47697 | The 5 th Fermat number is a not a prime. (Contributed by AV, 22-Jul-2021.) |
| ⊢ (FermatNo‘5) ∉ ℙ | ||
| Theorem | prmdvdsfmtnof1lem1 47698* | Lemma 1 for prmdvdsfmtnof1 47701. (Contributed by AV, 3-Aug-2021.) |
| ⊢ 𝐼 = inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹}, ℝ, < ) & ⊢ 𝐽 = inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺}, ℝ, < ) ⇒ ⊢ ((𝐹 ∈ (ℤ≥‘2) ∧ 𝐺 ∈ (ℤ≥‘2)) → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺))) | ||
| Theorem | prmdvdsfmtnof1lem2 47699 | Lemma 2 for prmdvdsfmtnof1 47701. (Contributed by AV, 3-Aug-2021.) |
| ⊢ ((𝐹 ∈ ran FermatNo ∧ 𝐺 ∈ ran FermatNo) → ((𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺) → 𝐹 = 𝐺)) | ||
| Theorem | prmdvdsfmtnof 47700* | The mapping of a Fermat number to its smallest prime factor is a function. (Contributed by AV, 4-Aug-2021.) (Proof shortened by II, 16-Feb-2023.) |
| ⊢ 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < )) ⇒ ⊢ 𝐹:ran FermatNo⟶ℙ | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |