| Metamath
Proof Explorer Theorem List (p. 477 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | 3exp4mod41 47601 | 3 to the fourth power is -1 modulo 41. (Contributed by AV, 5-Jul-2020.) |
| ⊢ ((3↑4) mod ;41) = (-1 mod ;41) | ||
| Theorem | 41prothprmlem1 47602 | Lemma 1 for 41prothprm 47604. (Contributed by AV, 4-Jul-2020.) |
| ⊢ 𝑃 = ;41 ⇒ ⊢ ((𝑃 − 1) / 2) = ;20 | ||
| Theorem | 41prothprmlem2 47603 | Lemma 2 for 41prothprm 47604. (Contributed by AV, 5-Jul-2020.) |
| ⊢ 𝑃 = ;41 ⇒ ⊢ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) | ||
| Theorem | 41prothprm 47604 | 41 is a Proth prime. (Contributed by AV, 5-Jul-2020.) |
| ⊢ 𝑃 = ;41 ⇒ ⊢ (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ) | ||
| Theorem | quad1 47605* | A condition for a quadratic equation with complex coefficients to have (exactly) one complex solution. (Contributed by AV, 23-Jan-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶)))) ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ ℂ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0)) | ||
| Theorem | requad01 47606* | A condition for a quadratic equation with real coefficients to have (at least) one real solution. (Contributed by AV, 23-Jan-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶)))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 0 ≤ 𝐷)) | ||
| Theorem | requad1 47607* | A condition for a quadratic equation with real coefficients to have (exactly) one real solution. (Contributed by AV, 26-Jan-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶)))) ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0)) | ||
| Theorem | requad2 47608* | A condition for a quadratic equation with real coefficients to have (exactly) two different real solutions. (Contributed by AV, 28-Jan-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶)))) ⇒ ⊢ (𝜑 → (∃!𝑝 ∈ 𝒫 ℝ((♯‘𝑝) = 2 ∧ ∀𝑥 ∈ 𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0) ↔ 0 < 𝐷)) | ||
Even and odd numbers can be characterized in many different ways. In the following, the definition of even and odd numbers is based on the fact that dividing an even number (resp. an odd number increased by 1) by 2 is an integer, see df-even 47611 and df-odd 47612. Alternate definitions resp. characterizations are provided in dfeven2 47634, dfeven3 47643, dfeven4 47623 and in dfodd2 47621, dfodd3 47635, dfodd4 47644, dfodd5 47645, dfodd6 47622. Each characterization can be useful (and used) in an appropriate context, e.g. dfodd6 47622 in opoeALTV 47668 and dfodd3 47635 in oddprmALTV 47672. Having a fixed definition for even and odd numbers, and alternate characterizations as theorems, advanced theorems about even and/or odd numbers can be expressed more explicitly, and the appropriate characterization can be chosen for their proof, which may become clearer and sometimes also shorter (see, for example, divgcdoddALTV 47667 and divgcdodd 16639). | ||
| Syntax | ceven 47609 | Extend the definition of a class to include the set of even numbers. |
| class Even | ||
| Syntax | codd 47610 | Extend the definition of a class to include the set of odd numbers. |
| class Odd | ||
| Definition | df-even 47611 | Define the set of even numbers. (Contributed by AV, 14-Jun-2020.) |
| ⊢ Even = {𝑧 ∈ ℤ ∣ (𝑧 / 2) ∈ ℤ} | ||
| Definition | df-odd 47612 | Define the set of odd numbers. (Contributed by AV, 14-Jun-2020.) |
| ⊢ Odd = {𝑧 ∈ ℤ ∣ ((𝑧 + 1) / 2) ∈ ℤ} | ||
| Theorem | iseven 47613 | The predicate "is an even number". An even number is an integer which is divisible by 2, i.e. the result of dividing the even integer by 2 is still an integer. (Contributed by AV, 14-Jun-2020.) |
| ⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ)) | ||
| Theorem | isodd 47614 | The predicate "is an odd number". An odd number is an integer which is not divisible by 2, i.e. the result of dividing the odd integer increased by 1 and then divided by 2 is still an integer. (Contributed by AV, 14-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ)) | ||
| Theorem | evenz 47615 | An even number is an integer. (Contributed by AV, 14-Jun-2020.) |
| ⊢ (𝑍 ∈ Even → 𝑍 ∈ ℤ) | ||
| Theorem | oddz 47616 | An odd number is an integer. (Contributed by AV, 14-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd → 𝑍 ∈ ℤ) | ||
| Theorem | evendiv2z 47617 | The result of dividing an even number by 2 is an integer. (Contributed by AV, 15-Jun-2020.) |
| ⊢ (𝑍 ∈ Even → (𝑍 / 2) ∈ ℤ) | ||
| Theorem | oddp1div2z 47618 | The result of dividing an odd number increased by 1 and then divided by 2 is an integer. (Contributed by AV, 15-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd → ((𝑍 + 1) / 2) ∈ ℤ) | ||
| Theorem | oddm1div2z 47619 | The result of dividing an odd number decreased by 1 and then divided by 2 is an integer. (Contributed by AV, 15-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd → ((𝑍 − 1) / 2) ∈ ℤ) | ||
| Theorem | isodd2 47620 | The predicate "is an odd number". An odd number is an integer which is not divisible by 2, i.e. the result of dividing the odd number decreased by 1 and then divided by 2 is still an integer. (Contributed by AV, 15-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 − 1) / 2) ∈ ℤ)) | ||
| Theorem | dfodd2 47621 | Alternate definition for odd numbers. (Contributed by AV, 15-Jun-2020.) |
| ⊢ Odd = {𝑧 ∈ ℤ ∣ ((𝑧 − 1) / 2) ∈ ℤ} | ||
| Theorem | dfodd6 47622* | Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.) |
| ⊢ Odd = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)} | ||
| Theorem | dfeven4 47623* | Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020.) |
| ⊢ Even = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖)} | ||
| Theorem | evenm1odd 47624 | The predecessor of an even number is odd. (Contributed by AV, 16-Jun-2020.) |
| ⊢ (𝑍 ∈ Even → (𝑍 − 1) ∈ Odd ) | ||
| Theorem | evenp1odd 47625 | The successor of an even number is odd. (Contributed by AV, 16-Jun-2020.) |
| ⊢ (𝑍 ∈ Even → (𝑍 + 1) ∈ Odd ) | ||
| Theorem | oddp1eveni 47626 | The successor of an odd number is even. (Contributed by AV, 16-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd → (𝑍 + 1) ∈ Even ) | ||
| Theorem | oddm1eveni 47627 | The predecessor of an odd number is even. (Contributed by AV, 6-Jul-2020.) |
| ⊢ (𝑍 ∈ Odd → (𝑍 − 1) ∈ Even ) | ||
| Theorem | evennodd 47628 | An even number is not an odd number. (Contributed by AV, 16-Jun-2020.) |
| ⊢ (𝑍 ∈ Even → ¬ 𝑍 ∈ Odd ) | ||
| Theorem | oddneven 47629 | An odd number is not an even number. (Contributed by AV, 16-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd → ¬ 𝑍 ∈ Even ) | ||
| Theorem | enege 47630 | The negative of an even number is even. (Contributed by AV, 20-Jun-2020.) |
| ⊢ (𝐴 ∈ Even → -𝐴 ∈ Even ) | ||
| Theorem | onego 47631 | The negative of an odd number is odd. (Contributed by AV, 20-Jun-2020.) |
| ⊢ (𝐴 ∈ Odd → -𝐴 ∈ Odd ) | ||
| Theorem | m1expevenALTV 47632 | Exponentiation of -1 by an even power. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 6-Jul-2020.) |
| ⊢ (𝑁 ∈ Even → (-1↑𝑁) = 1) | ||
| Theorem | m1expoddALTV 47633 | Exponentiation of -1 by an odd power. (Contributed by AV, 6-Jul-2020.) |
| ⊢ (𝑁 ∈ Odd → (-1↑𝑁) = -1) | ||
| Theorem | dfeven2 47634 | Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020.) |
| ⊢ Even = {𝑧 ∈ ℤ ∣ 2 ∥ 𝑧} | ||
| Theorem | dfodd3 47635 | Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.) |
| ⊢ Odd = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} | ||
| Theorem | iseven2 47636 | The predicate "is an even number". An even number is an integer which is divisible by 2. (Contributed by AV, 18-Jun-2020.) |
| ⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ 2 ∥ 𝑍)) | ||
| Theorem | isodd3 47637 | The predicate "is an odd number". An odd number is an integer which is not divisible by 2. (Contributed by AV, 18-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ¬ 2 ∥ 𝑍)) | ||
| Theorem | 2dvdseven 47638 | 2 divides an even number. (Contributed by AV, 18-Jun-2020.) |
| ⊢ (𝑍 ∈ Even → 2 ∥ 𝑍) | ||
| Theorem | m2even 47639 | A multiple of 2 is an even number. (Contributed by AV, 5-Jun-2023.) |
| ⊢ (𝑍 ∈ ℤ → (2 · 𝑍) ∈ Even ) | ||
| Theorem | 2ndvdsodd 47640 | 2 does not divide an odd number. (Contributed by AV, 18-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd → ¬ 2 ∥ 𝑍) | ||
| Theorem | 2dvdsoddp1 47641 | 2 divides an odd number increased by 1. (Contributed by AV, 18-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd → 2 ∥ (𝑍 + 1)) | ||
| Theorem | 2dvdsoddm1 47642 | 2 divides an odd number decreased by 1. (Contributed by AV, 18-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd → 2 ∥ (𝑍 − 1)) | ||
| Theorem | dfeven3 47643 | Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020.) |
| ⊢ Even = {𝑧 ∈ ℤ ∣ (𝑧 mod 2) = 0} | ||
| Theorem | dfodd4 47644 | Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.) |
| ⊢ Odd = {𝑧 ∈ ℤ ∣ (𝑧 mod 2) = 1} | ||
| Theorem | dfodd5 47645 | Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.) |
| ⊢ Odd = {𝑧 ∈ ℤ ∣ (𝑧 mod 2) ≠ 0} | ||
| Theorem | zefldiv2ALTV 47646 | The floor of an even number divided by 2 is equal to the even number divided by 2. (Contributed by AV, 7-Jun-2020.) (Revised by AV, 18-Jun-2020.) |
| ⊢ (𝑁 ∈ Even → (⌊‘(𝑁 / 2)) = (𝑁 / 2)) | ||
| Theorem | zofldiv2ALTV 47647 | The floor of an odd number divided by 2 is equal to the odd number first decreased by 1 and then divided by 2. (Contributed by AV, 7-Jun-2020.) (Revised by AV, 18-Jun-2020.) |
| ⊢ (𝑁 ∈ Odd → (⌊‘(𝑁 / 2)) = ((𝑁 − 1) / 2)) | ||
| Theorem | oddflALTV 47648 | Odd number representation by using the floor function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 18-Jun-2020.) |
| ⊢ (𝐾 ∈ Odd → 𝐾 = ((2 · (⌊‘(𝐾 / 2))) + 1)) | ||
| Theorem | iseven5 47649 | The predicate "is an even number". An even number and 2 have 2 as greatest common divisor. (Contributed by AV, 1-Jul-2020.) |
| ⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (2 gcd 𝑍) = 2)) | ||
| Theorem | isodd7 47650 | The predicate "is an odd number". An odd number and 2 have 1 as greatest common divisor. (Contributed by AV, 1-Jul-2020.) |
| ⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ (2 gcd 𝑍) = 1)) | ||
| Theorem | dfeven5 47651 | Alternate definition for even numbers. (Contributed by AV, 1-Jul-2020.) |
| ⊢ Even = {𝑧 ∈ ℤ ∣ (2 gcd 𝑧) = 2} | ||
| Theorem | dfodd7 47652 | Alternate definition for odd numbers. (Contributed by AV, 1-Jul-2020.) |
| ⊢ Odd = {𝑧 ∈ ℤ ∣ (2 gcd 𝑧) = 1} | ||
| Theorem | gcd2odd1 47653 | The greatest common divisor of an odd number and 2 is 1, i.e., 2 and any odd number are coprime. Remark: The proof using dfodd7 47652 is longer (see proof in comment)! (Contributed by AV, 5-Jun-2023.) |
| ⊢ (𝑍 ∈ Odd → (𝑍 gcd 2) = 1) | ||
| Theorem | zneoALTV 47654 | No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. (Contributed by NM, 31-Jul-2004.) (Revised by AV, 16-Jun-2020.) |
| ⊢ ((𝐴 ∈ Even ∧ 𝐵 ∈ Odd ) → 𝐴 ≠ 𝐵) | ||
| Theorem | zeoALTV 47655 | An integer is even or odd. (Contributed by NM, 1-Jan-2006.) (Revised by AV, 16-Jun-2020.) |
| ⊢ (𝑍 ∈ ℤ → (𝑍 ∈ Even ∨ 𝑍 ∈ Odd )) | ||
| Theorem | zeo2ALTV 47656 | An integer is even or odd but not both. (Contributed by Mario Carneiro, 12-Sep-2015.) (Revised by AV, 16-Jun-2020.) |
| ⊢ (𝑍 ∈ ℤ → (𝑍 ∈ Even ↔ ¬ 𝑍 ∈ Odd )) | ||
| Theorem | nneoALTV 47657 | A positive integer is even or odd but not both. (Contributed by NM, 1-Jan-2006.) (Revised by AV, 19-Jun-2020.) |
| ⊢ (𝑁 ∈ ℕ → (𝑁 ∈ Even ↔ ¬ 𝑁 ∈ Odd )) | ||
| Theorem | nneoiALTV 47658 | A positive integer is even or odd but not both. (Contributed by NM, 20-Aug-2001.) (Revised by AV, 19-Jun-2020.) |
| ⊢ 𝑁 ∈ ℕ ⇒ ⊢ (𝑁 ∈ Even ↔ ¬ 𝑁 ∈ Odd ) | ||
| Theorem | odd2np1ALTV 47659* | An integer is odd iff it is one plus twice another integer. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by AV, 19-Jun-2020.) |
| ⊢ (𝑁 ∈ ℤ → (𝑁 ∈ Odd ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)) | ||
| Theorem | oddm1evenALTV 47660 | An integer is odd iff its predecessor is even. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) |
| ⊢ (𝑁 ∈ ℤ → (𝑁 ∈ Odd ↔ (𝑁 − 1) ∈ Even )) | ||
| Theorem | oddp1evenALTV 47661 | An integer is odd iff its successor is even. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) |
| ⊢ (𝑁 ∈ ℤ → (𝑁 ∈ Odd ↔ (𝑁 + 1) ∈ Even )) | ||
| Theorem | oexpnegALTV 47662 | The exponential of the negative of a number, when the exponent is odd. (Contributed by Mario Carneiro, 25-Apr-2015.) (Revised by AV, 19-Jun-2020.) (Proof shortened by AV, 10-Jul-2022.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) → (-𝐴↑𝑁) = -(𝐴↑𝑁)) | ||
| Theorem | oexpnegnz 47663 | The exponential of the negative of a number not being 0, when the exponent is odd. (Contributed by AV, 19-Jun-2020.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) → (-𝐴↑𝑁) = -(𝐴↑𝑁)) | ||
| Theorem | bits0ALTV 47664 | Value of the zeroth bit. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) |
| ⊢ (𝑁 ∈ ℤ → (0 ∈ (bits‘𝑁) ↔ 𝑁 ∈ Odd )) | ||
| Theorem | bits0eALTV 47665 | The zeroth bit of an even number is zero. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) |
| ⊢ (𝑁 ∈ Even → ¬ 0 ∈ (bits‘𝑁)) | ||
| Theorem | bits0oALTV 47666 | The zeroth bit of an odd number is zero. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) |
| ⊢ (𝑁 ∈ Odd → 0 ∈ (bits‘𝑁)) | ||
| Theorem | divgcdoddALTV 47667 | Either 𝐴 / (𝐴 gcd 𝐵) is odd or 𝐵 / (𝐴 gcd 𝐵) is odd. (Contributed by Scott Fenton, 19-Apr-2014.) (Revised by AV, 21-Jun-2020.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / (𝐴 gcd 𝐵)) ∈ Odd ∨ (𝐵 / (𝐴 gcd 𝐵)) ∈ Odd )) | ||
| Theorem | opoeALTV 47668 | The sum of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.) |
| ⊢ ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → (𝐴 + 𝐵) ∈ Even ) | ||
| Theorem | opeoALTV 47669 | The sum of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.) |
| ⊢ ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → (𝐴 + 𝐵) ∈ Odd ) | ||
| Theorem | omoeALTV 47670 | The difference of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.) |
| ⊢ ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → (𝐴 − 𝐵) ∈ Even ) | ||
| Theorem | omeoALTV 47671 | The difference of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.) |
| ⊢ ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → (𝐴 − 𝐵) ∈ Odd ) | ||
| Theorem | oddprmALTV 47672 | A prime not equal to 2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) (Revised by AV, 21-Jun-2020.) |
| ⊢ (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ Odd ) | ||
| Theorem | 0evenALTV 47673 | 0 is an even number. (Contributed by AV, 11-Feb-2020.) (Revised by AV, 17-Jun-2020.) |
| ⊢ 0 ∈ Even | ||
| Theorem | 0noddALTV 47674 | 0 is not an odd number. (Contributed by AV, 3-Feb-2020.) (Revised by AV, 17-Jun-2020.) |
| ⊢ 0 ∉ Odd | ||
| Theorem | 1oddALTV 47675 | 1 is an odd number. (Contributed by AV, 3-Feb-2020.) (Revised by AV, 18-Jun-2020.) |
| ⊢ 1 ∈ Odd | ||
| Theorem | 1nevenALTV 47676 | 1 is not an even number. (Contributed by AV, 12-Feb-2020.) (Revised by AV, 18-Jun-2020.) |
| ⊢ 1 ∉ Even | ||
| Theorem | 2evenALTV 47677 | 2 is an even number. (Contributed by AV, 12-Feb-2020.) (Revised by AV, 18-Jun-2020.) |
| ⊢ 2 ∈ Even | ||
| Theorem | 2noddALTV 47678 | 2 is not an odd number. (Contributed by AV, 3-Feb-2020.) (Revised by AV, 18-Jun-2020.) |
| ⊢ 2 ∉ Odd | ||
| Theorem | nn0o1gt2ALTV 47679 | An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020.) (Revised by AV, 21-Jun-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Odd ) → (𝑁 = 1 ∨ 2 < 𝑁)) | ||
| Theorem | nnoALTV 47680 | An alternate characterization of an odd number greater than 1. (Contributed by AV, 2-Jun-2020.) (Revised by AV, 21-Jun-2020.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ Odd ) → ((𝑁 − 1) / 2) ∈ ℕ) | ||
| Theorem | nn0oALTV 47681 | An alternate characterization of an odd nonnegative integer. (Contributed by AV, 28-May-2020.) (Revised by AV, 21-Jun-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Odd ) → ((𝑁 − 1) / 2) ∈ ℕ0) | ||
| Theorem | nn0e 47682 | An alternate characterization of an even nonnegative integer. (Contributed by AV, 22-Jun-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Even ) → (𝑁 / 2) ∈ ℕ0) | ||
| Theorem | nneven 47683 | An alternate characterization of an even positive integer. (Contributed by AV, 5-Jun-2023.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) → (𝑁 / 2) ∈ ℕ) | ||
| Theorem | nn0onn0exALTV 47684* | For each odd nonnegative integer there is a nonnegative integer which, multiplied by 2 and increased by 1, results in the odd nonnegative integer. (Contributed by AV, 30-May-2020.) (Revised by AV, 22-Jun-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Odd ) → ∃𝑚 ∈ ℕ0 𝑁 = ((2 · 𝑚) + 1)) | ||
| Theorem | nn0enn0exALTV 47685* | For each even nonnegative integer there is a nonnegative integer which, multiplied by 2, results in the even nonnegative integer. (Contributed by AV, 30-May-2020.) (Revised by AV, 22-Jun-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Even ) → ∃𝑚 ∈ ℕ0 𝑁 = (2 · 𝑚)) | ||
| Theorem | nnennexALTV 47686* | For each even positive integer there is a positive integer which, multiplied by 2, results in the even positive integer. (Contributed by AV, 5-Jun-2023.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) → ∃𝑚 ∈ ℕ 𝑁 = (2 · 𝑚)) | ||
| Theorem | nnpw2evenALTV 47687 | 2 to the power of a positive integer is even. (Contributed by AV, 2-Jun-2020.) (Revised by AV, 20-Jun-2020.) |
| ⊢ (𝑁 ∈ ℕ → (2↑𝑁) ∈ Even ) | ||
| Theorem | epoo 47688 | The sum of an even and an odd is odd. (Contributed by AV, 24-Jul-2020.) |
| ⊢ ((𝐴 ∈ Even ∧ 𝐵 ∈ Odd ) → (𝐴 + 𝐵) ∈ Odd ) | ||
| Theorem | emoo 47689 | The difference of an even and an odd is odd. (Contributed by AV, 24-Jul-2020.) |
| ⊢ ((𝐴 ∈ Even ∧ 𝐵 ∈ Odd ) → (𝐴 − 𝐵) ∈ Odd ) | ||
| Theorem | epee 47690 | The sum of two even numbers is even. (Contributed by AV, 21-Jul-2020.) |
| ⊢ ((𝐴 ∈ Even ∧ 𝐵 ∈ Even ) → (𝐴 + 𝐵) ∈ Even ) | ||
| Theorem | emee 47691 | The difference of two even numbers is even. (Contributed by AV, 21-Jul-2020.) |
| ⊢ ((𝐴 ∈ Even ∧ 𝐵 ∈ Even ) → (𝐴 − 𝐵) ∈ Even ) | ||
| Theorem | evensumeven 47692 | If a summand is even, the other summand is even iff the sum is even. (Contributed by AV, 21-Jul-2020.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ Even ) → (𝐴 ∈ Even ↔ (𝐴 + 𝐵) ∈ Even )) | ||
| Theorem | 3odd 47693 | 3 is an odd number. (Contributed by AV, 20-Jul-2020.) |
| ⊢ 3 ∈ Odd | ||
| Theorem | 4even 47694 | 4 is an even number. (Contributed by AV, 23-Jul-2020.) |
| ⊢ 4 ∈ Even | ||
| Theorem | 5odd 47695 | 5 is an odd number. (Contributed by AV, 23-Jul-2020.) |
| ⊢ 5 ∈ Odd | ||
| Theorem | 6even 47696 | 6 is an even number. (Contributed by AV, 20-Jul-2020.) |
| ⊢ 6 ∈ Even | ||
| Theorem | 7odd 47697 | 7 is an odd number. (Contributed by AV, 20-Jul-2020.) |
| ⊢ 7 ∈ Odd | ||
| Theorem | 8even 47698 | 8 is an even number. (Contributed by AV, 23-Jul-2020.) |
| ⊢ 8 ∈ Even | ||
| Theorem | evenprm2 47699 | A prime number is even iff it is 2. (Contributed by AV, 21-Jul-2020.) |
| ⊢ (𝑃 ∈ ℙ → (𝑃 ∈ Even ↔ 𝑃 = 2)) | ||
| Theorem | oddprmne2 47700 | Every prime number not being 2 is an odd prime number. (Contributed by AV, 21-Aug-2021.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∈ Odd ) ↔ 𝑃 ∈ (ℙ ∖ {2})) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |