![]() |
Metamath
Proof Explorer Theorem List (p. 477 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Statement | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fpprmod 47601* | The set of Fermat pseudoprimes to the base 𝑁, expressed by a modulo operation instead of the divisibility relation. (Contributed by AV, 30-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1)}) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fpprel 47602 | A Fermat pseudoprime to the base 𝑁. (Contributed by AV, 30-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ≥‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fpprbasnn 47603 | The base of a Fermat pseudoprime is a positive integer. (Contributed by AV, 30-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fpprnn 47604 | A Fermat pseudoprime to the base 𝑁 is a positive integer. (Contributed by AV, 30-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑋 ∈ ( FPPr ‘𝑁) → 𝑋 ∈ ℕ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fppr2odd 47605 | A Fermat pseudoprime to the base 2 is odd. (Contributed by AV, 5-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑋 ∈ ( FPPr ‘2) → 𝑋 ∈ Odd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 11t31e341 47606 | 341 is the product of 11 and 31. (Contributed by AV, 3-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (;11 · ;31) = ;;341 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 2exp340mod341 47607 | Eight to the eighth power modulo nine is one. (Contributed by AV, 3-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((2↑;;340) mod ;;341) = 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 341fppr2 47608 | 341 is the (smallest) Poulet number (Fermat pseudoprime to the base 2). (Contributed by AV, 3-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ;;341 ∈ ( FPPr ‘2) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 4fppr1 47609 | 4 is the (smallest) Fermat pseudoprime to the base 1. (Contributed by AV, 3-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 4 ∈ ( FPPr ‘1) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 8exp8mod9 47610 | Eight to the eighth power modulo nine is one. (Contributed by AV, 2-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((8↑8) mod 9) = 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 9fppr8 47611 | 9 is the (smallest) Fermat pseudoprime to the base 8. (Contributed by AV, 2-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 9 ∈ ( FPPr ‘8) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | dfwppr 47612 | Alternate definition of a weak pseudoprime 𝑋, which fulfils (𝑁↑𝑋)≡𝑁 (modulo 𝑋), see Wikipedia "Fermat pseudoprime", https://en.wikipedia.org/wiki/Fermat_pseudoprime, 29-May-2023. (Contributed by AV, 31-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℕ) → (((𝑁↑𝑋) mod 𝑋) = (𝑁 mod 𝑋) ↔ 𝑋 ∥ ((𝑁↑𝑋) − 𝑁))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fpprwppr 47613 | A Fermat pseudoprime to the base 𝑁 is a weak pseudoprime (see Wikipedia "Fermat pseudoprime", 29-May-2023, https://en.wikipedia.org/wiki/Fermat_pseudoprime. (Contributed by AV, 31-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑋 ∈ ( FPPr ‘𝑁) → ((𝑁↑𝑋) mod 𝑋) = (𝑁 mod 𝑋)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fpprwpprb 47614 | An integer 𝑋 which is coprime with an integer 𝑁 is a Fermat pseudoprime to the base 𝑁 iff it is a weak pseudoprime to the base 𝑁. (Contributed by AV, 2-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑋 gcd 𝑁) = 1 → (𝑋 ∈ ( FPPr ‘𝑁) ↔ ((𝑋 ∈ (ℤ≥‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁↑𝑋) mod 𝑋) = (𝑁 mod 𝑋))))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fpprel2 47615 | An alternate definition for a Fermat pseudoprime to the base 2. (Contributed by AV, 5-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑋 ∈ ( FPPr ‘2) ↔ ((𝑋 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nfermltl8rev 47616 | Fermat's little theorem with base 8 reversed is not generally true: There is an integer 𝑝 (for example 9, see 9fppr8 47611) so that "𝑝 is prime" does not follow from 8↑𝑝≡8 (mod 𝑝). (Contributed by AV, 3-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nfermltl2rev 47617 | Fermat's little theorem with base 2 reversed is not generally true: There is an integer 𝑝 (for example 341, see 341fppr2 47608) so that "𝑝 is prime" does not follow from 2↑𝑝≡2 (mod 𝑝). (Contributed by AV, 3-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((2↑𝑝) mod 𝑝) = (2 mod 𝑝) → 𝑝 ∈ ℙ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nfermltlrev 47618* | Fermat's little theorem reversed is not generally true: There are integers 𝑎 and 𝑝 so that "𝑝 is prime" does not follow from 𝑎↑𝑝≡𝑎 (mod 𝑝). (Contributed by AV, 3-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ∃𝑎 ∈ ℤ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((𝑎↑𝑝) mod 𝑝) = (𝑎 mod 𝑝) → 𝑝 ∈ ℙ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
According to Wikipedia ("Goldbach's conjecture", 20-Jul-2020,
https://en.wikipedia.org/wiki/Goldbach's_conjecture) "Goldbach's
conjecture ... states: Every even integer greater than 2 can be expressed as
the sum of two primes." "It is also known as strong, even or binary Goldbach
conjecture, to distinguish it from a weaker conjecture, known ... as the
_Goldbach's weak conjecture_, the _odd Goldbach conjecture_, or the _ternary
Goldbach conjecture_. This weak conjecture asserts that all odd numbers
greater than 7 are the sum of three odd primes.". In the following, the
terms "binary Goldbach conjecture" resp. "ternary Goldbach conjecture" will
be used (following the terminology used in [Helfgott] p. 2), because there
are a strong and a weak version of the ternary Goldbach conjecture. The term
_Goldbach partition_ is used for a sum of two resp. three (odd) primes
resulting in an even resp. odd number without further specialization.
Summary/glossary:
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Syntax | cgbe 47619 | Extend the definition of a class to include the set of even numbers which have a Goldbach partition. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
class GoldbachEven | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Syntax | cgbow 47620 | Extend the definition of a class to include the set of odd numbers which can be written as a sum of three primes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
class GoldbachOddW | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Syntax | cgbo 47621 | Extend the definition of a class to include the set of odd numbers which can be written as a sum of three odd primes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
class GoldbachOdd | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Definition | df-gbe 47622* | Define the set of (even) Goldbach numbers, which are positive even integers that can be expressed as the sum of two odd primes. By this definition, the binary Goldbach conjecture can be expressed as ∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ). (Contributed by AV, 14-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ GoldbachEven = {𝑧 ∈ Even ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))} | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Definition | df-gbow 47623* | Define the set of weak odd Goldbach numbers, which are positive odd integers that can be expressed as the sum of three primes. By this definition, the weak ternary Goldbach conjecture can be expressed as ∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ). (Contributed by AV, 14-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ GoldbachOddW = {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟)} | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Definition | df-gbo 47624* | Define the set of (strong) odd Goldbach numbers, which are positive odd integers that can be expressed as the sum of three odd primes. By this definition, the strong ternary Goldbach conjecture can be expressed as ∀𝑚 ∈ Odd (7 < 𝑚 → 𝑚 ∈ GoldbachOdd ). (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ GoldbachOdd = {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))} | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | isgbe 47625* | The predicate "is an even Goldbach number". An even Goldbach number is an even integer having a Goldbach partition, i.e. which can be written as a sum of two odd primes. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachEven ↔ (𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | isgbow 47626* | The predicate "is a weak odd Goldbach number". A weak odd Goldbach number is an odd integer having a Goldbach partition, i.e. which can be written as a sum of three primes. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOddW ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | isgbo 47627* | The predicate "is an odd Goldbach number". An odd Goldbach number is an odd integer having a Goldbach partition, i.e. which can be written as sum of three odd primes. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOdd ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟)))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbeeven 47628 | An even Goldbach number is even. (Contributed by AV, 25-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachEven → 𝑍 ∈ Even ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbowodd 47629 | A weak odd Goldbach number is odd. (Contributed by AV, 25-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOddW → 𝑍 ∈ Odd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbogbow 47630 | A (strong) odd Goldbach number is a weak Goldbach number. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOdd → 𝑍 ∈ GoldbachOddW ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gboodd 47631 | An odd Goldbach number is odd. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOdd → 𝑍 ∈ Odd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbepos 47632 | Any even Goldbach number is positive. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachEven → 𝑍 ∈ ℕ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbowpos 47633 | Any weak odd Goldbach number is positive. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOddW → 𝑍 ∈ ℕ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbopos 47634 | Any odd Goldbach number is positive. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOdd → 𝑍 ∈ ℕ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbegt5 47635 | Any even Goldbach number is greater than 5. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachEven → 5 < 𝑍) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbowgt5 47636 | Any weak odd Goldbach number is greater than 5. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOddW → 5 < 𝑍) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbowge7 47637 | Any weak odd Goldbach number is greater than or equal to 7. Because of 7gbow 47646, this bound is strict. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOddW → 7 ≤ 𝑍) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gboge9 47638 | Any odd Goldbach number is greater than or equal to 9. Because of 9gbo 47648, this bound is strict. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOdd → 9 ≤ 𝑍) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbege6 47639 | Any even Goldbach number is greater than or equal to 6. Because of 6gbe 47645, this bound is strict. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachEven → 6 ≤ 𝑍) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbpart6 47640 | The Goldbach partition of 6. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 6 = (3 + 3) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbpart7 47641 | The (weak) Goldbach partition of 7. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 7 = ((2 + 2) + 3) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbpart8 47642 | The Goldbach partition of 8. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 8 = (3 + 5) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbpart9 47643 | The (strong) Goldbach partition of 9. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 9 = ((3 + 3) + 3) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbpart11 47644 | The (strong) Goldbach partition of 11. (Contributed by AV, 29-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ;11 = ((3 + 3) + 5) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 6gbe 47645 | 6 is an even Goldbach number. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 6 ∈ GoldbachEven | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 7gbow 47646 | 7 is a weak odd Goldbach number. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 7 ∈ GoldbachOddW | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 8gbe 47647 | 8 is an even Goldbach number. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 8 ∈ GoldbachEven | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 9gbo 47648 | 9 is an odd Goldbach number. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 9 ∈ GoldbachOdd | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 11gbo 47649 | 11 is an odd Goldbach number. (Contributed by AV, 29-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ;11 ∈ GoldbachOdd | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | stgoldbwt 47650 | If the strong ternary Goldbach conjecture is valid, then the weak ternary Goldbach conjecture holds, too. (Contributed by AV, 27-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑛 ∈ Odd (7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) → ∀𝑛 ∈ Odd (5 < 𝑛 → 𝑛 ∈ GoldbachOddW )) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | sbgoldbwt 47651* | If the strong binary Goldbach conjecture is valid, then the (weak) ternary Goldbach conjecture holds, too. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW )) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | sbgoldbst 47652* | If the strong binary Goldbach conjecture is valid, then the (strong) ternary Goldbach conjecture holds, too. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∀𝑚 ∈ Odd (7 < 𝑚 → 𝑚 ∈ GoldbachOdd )) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | sbgoldbaltlem1 47653 | Lemma 1 for sbgoldbalt 47655: If an even number greater than 4 is the sum of two primes, one of the prime summands must be odd, i.e. not 2. (Contributed by AV, 22-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 = (𝑃 + 𝑄)) → 𝑄 ∈ Odd )) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | sbgoldbaltlem2 47654 | Lemma 2 for sbgoldbalt 47655: If an even number greater than 4 is the sum of two primes, the primes must be odd, i.e. not 2. (Contributed by AV, 22-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 ∈ Odd ∧ 𝑄 ∈ Odd ))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | sbgoldbalt 47655* | An alternate (related to the original) formulation of the binary Goldbach conjecture: Every even integer greater than 2 can be expressed as the sum of two primes. (Contributed by AV, 22-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) ↔ ∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | sbgoldbb 47656* | If the strong binary Goldbach conjecture is valid, the binary Goldbach conjecture is valid. (Contributed by AV, 23-Dec-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | sgoldbeven3prm 47657* | If the binary Goldbach conjecture is valid, then an even integer greater than 5 can be expressed as the sum of three primes: Since (𝑁 − 2) is even iff 𝑁 is even, there would be primes 𝑝 and 𝑞 with (𝑁 − 2) = (𝑝 + 𝑞), and therefore 𝑁 = ((𝑝 + 𝑞) + 2). (Contributed by AV, 24-Dec-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | sbgoldbm 47658* | If the strong binary Goldbach conjecture is valid, the modern version of the original formulation of the Goldbach conjecture also holds: Every integer greater than 5 can be expressed as the sum of three primes. (Contributed by AV, 24-Dec-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ≥‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | mogoldbb 47659* | If the modern version of the original formulation of the Goldbach conjecture is valid, the (weak) binary Goldbach conjecture also holds. (Contributed by AV, 26-Dec-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑛 ∈ (ℤ≥‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → ∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | sbgoldbmb 47660* | The strong binary Goldbach conjecture and the modern version of the original formulation of the Goldbach conjecture are equivalent. (Contributed by AV, 26-Dec-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) ↔ ∀𝑛 ∈ (ℤ≥‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | sbgoldbo 47661* | If the strong binary Goldbach conjecture is valid, the original formulation of the Goldbach conjecture also holds: Every integer greater than 2 can be expressed as the sum of three "primes" with regarding 1 to be a prime (as Goldbach did). Original text: "Es scheint wenigstens, dass eine jede Zahl, die groesser ist als 2, ein aggregatum trium numerorum primorum sey." (Goldbach, 1742). (Contributed by AV, 25-Dec-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = ({1} ∪ ℙ) ⇒ ⊢ (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ≥‘3)∃𝑝 ∈ 𝑃 ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nnsum3primes4 47662* | 4 is the sum of at most 3 (actually 2) primes. (Contributed by AV, 2-Aug-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nnsum4primes4 47663* | 4 is the sum of at most 4 (actually 2) primes. (Contributed by AV, 23-Jul-2020.) (Proof shortened by AV, 2-Aug-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nnsum3primesprm 47664* | Every prime is "the sum of at most 3" (actually one - the prime itself) primes. (Contributed by AV, 2-Aug-2020.) (Proof shortened by AV, 17-Apr-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑃 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nnsum4primesprm 47665* | Every prime is "the sum of at most 4" (actually one - the prime itself) primes. (Contributed by AV, 23-Jul-2020.) (Proof shortened by AV, 2-Aug-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑃 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nnsum3primesgbe 47666* | Any even Goldbach number is the sum of at most 3 (actually 2) primes. (Contributed by AV, 2-Aug-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ GoldbachEven → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nnsum4primesgbe 47667* | Any even Goldbach number is the sum of at most 4 (actually 2) primes. (Contributed by AV, 23-Jul-2020.) (Proof shortened by AV, 2-Aug-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ GoldbachEven → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nnsum3primesle9 47668* | Every integer greater than 1 and less than or equal to 8 is the sum of at most 3 primes. (Contributed by AV, 2-Aug-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑁 ≤ 8) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nnsum4primesle9 47669* | Every integer greater than 1 and less than or equal to 8 is the sum of at most 4 primes. (Contributed by AV, 24-Jul-2020.) (Proof shortened by AV, 2-Aug-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑁 ≤ 8) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nnsum4primesodd 47670* | If the (weak) ternary Goldbach conjecture is valid, then every odd integer greater than 5 is the sum of 3 primes. (Contributed by AV, 2-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ((𝑁 ∈ (ℤ≥‘6) ∧ 𝑁 ∈ Odd ) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nnsum4primesoddALTV 47671* | If the (strong) ternary Goldbach conjecture is valid, then every odd integer greater than 7 is the sum of 3 primes. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑚 ∈ Odd (7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ≥‘8) ∧ 𝑁 ∈ Odd ) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | evengpop3 47672* | If the (weak) ternary Goldbach conjecture is valid, then every even integer greater than 8 is the sum of an odd Goldbach number and 3. (Contributed by AV, 24-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ((𝑁 ∈ (ℤ≥‘9) ∧ 𝑁 ∈ Even ) → ∃𝑜 ∈ GoldbachOddW 𝑁 = (𝑜 + 3))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | evengpoap3 47673* | If the (strong) ternary Goldbach conjecture is valid, then every even integer greater than 10 is the sum of an odd Goldbach number and 3. (Contributed by AV, 27-Jul-2020.) (Proof shortened by AV, 15-Sep-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑚 ∈ Odd (7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ≥‘;12) ∧ 𝑁 ∈ Even ) → ∃𝑜 ∈ GoldbachOdd 𝑁 = (𝑜 + 3))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nnsum4primeseven 47674* | If the (weak) ternary Goldbach conjecture is valid, then every even integer greater than 8 is the sum of 4 primes. (Contributed by AV, 25-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ((𝑁 ∈ (ℤ≥‘9) ∧ 𝑁 ∈ Even ) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓‘𝑘))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nnsum4primesevenALTV 47675* | If the (strong) ternary Goldbach conjecture is valid, then every even integer greater than 10 is the sum of 4 primes. (Contributed by AV, 27-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑚 ∈ Odd (7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ≥‘;12) ∧ 𝑁 ∈ Even ) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓‘𝑘))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | wtgoldbnnsum4prm 47676* | If the (weak) ternary Goldbach conjecture is valid, then every integer greater than 1 is the sum of at most 4 primes, showing that Schnirelmann's constant would be less than or equal to 4. See corollary 1.1 in [Helfgott] p. 4. (Contributed by AV, 25-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ∀𝑛 ∈ (ℤ≥‘2)∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | stgoldbnnsum4prm 47677* | If the (strong) ternary Goldbach conjecture is valid, then every integer greater than 1 is the sum of at most 4 primes. (Contributed by AV, 27-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑚 ∈ Odd (7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) → ∀𝑛 ∈ (ℤ≥‘2)∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | bgoldbnnsum3prm 47678* | If the binary Goldbach conjecture is valid, then every integer greater than 1 is the sum of at most 3 primes, showing that Schnirelmann's constant would be equal to 3. (Contributed by AV, 2-Aug-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑚 ∈ Even (4 < 𝑚 → 𝑚 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ≥‘2)∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | bgoldbtbndlem1 47679 | Lemma 1 for bgoldbtbnd 47683: the odd numbers between 7 and 13 (exclusive) are odd Goldbach numbers. (Contributed by AV, 29-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ Odd ∧ 7 < 𝑁 ∧ 𝑁 ∈ (7[,);13)) → 𝑁 ∈ GoldbachOdd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | bgoldbtbndlem2 47680* | Lemma 2 for bgoldbtbnd 47683. (Contributed by AV, 1-Aug-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘;11)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘;11)) & ⊢ (𝜑 → ∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven )) & ⊢ (𝜑 → 𝐷 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → 𝐹 ∈ (RePart‘𝐷)) & ⊢ (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹‘𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)))) & ⊢ (𝜑 → (𝐹‘0) = 7) & ⊢ (𝜑 → (𝐹‘1) = ;13) & ⊢ (𝜑 → 𝑀 < (𝐹‘𝐷)) & ⊢ 𝑆 = (𝑋 − (𝐹‘(𝐼 − 1))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 ∈ ((𝐹‘𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹‘𝐼)) ≤ 4) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | bgoldbtbndlem3 47681* | Lemma 3 for bgoldbtbnd 47683. (Contributed by AV, 1-Aug-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘;11)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘;11)) & ⊢ (𝜑 → ∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven )) & ⊢ (𝜑 → 𝐷 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → 𝐹 ∈ (RePart‘𝐷)) & ⊢ (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹‘𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)))) & ⊢ (𝜑 → (𝐹‘0) = 7) & ⊢ (𝜑 → (𝐹‘1) = ;13) & ⊢ (𝜑 → 𝑀 < (𝐹‘𝐷)) & ⊢ (𝜑 → (𝐹‘𝐷) ∈ ℝ) & ⊢ 𝑆 = (𝑋 − (𝐹‘𝐼)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 ∈ ((𝐹‘𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | bgoldbtbndlem4 47682* | Lemma 4 for bgoldbtbnd 47683. (Contributed by AV, 1-Aug-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘;11)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘;11)) & ⊢ (𝜑 → ∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven )) & ⊢ (𝜑 → 𝐷 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → 𝐹 ∈ (RePart‘𝐷)) & ⊢ (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹‘𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)))) & ⊢ (𝜑 → (𝐹‘0) = 7) & ⊢ (𝜑 → (𝐹‘1) = ;13) & ⊢ (𝜑 → 𝑀 < (𝐹‘𝐷)) & ⊢ (𝜑 → (𝐹‘𝐷) ∈ ℝ) ⇒ ⊢ (((𝜑 ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) → ((𝑋 ∈ ((𝐹‘𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹‘𝐼)) ≤ 4) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟)))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | bgoldbtbnd 47683* | If the binary Goldbach conjecture is valid up to an integer 𝑁, and there is a series ("ladder") of primes with a difference of at most 𝑁 up to an integer 𝑀, then the strong ternary Goldbach conjecture is valid up to 𝑀, see section 1.2.2 in [Helfgott] p. 4 with N = 4 x 10^18, taken from [OeSilva], and M = 8.875 x 10^30. (Contributed by AV, 1-Aug-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘;11)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘;11)) & ⊢ (𝜑 → ∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven )) & ⊢ (𝜑 → 𝐷 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → 𝐹 ∈ (RePart‘𝐷)) & ⊢ (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹‘𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)))) & ⊢ (𝜑 → (𝐹‘0) = 7) & ⊢ (𝜑 → (𝐹‘1) = ;13) & ⊢ (𝜑 → 𝑀 < (𝐹‘𝐷)) & ⊢ (𝜑 → (𝐹‘𝐷) ∈ ℝ) ⇒ ⊢ (𝜑 → ∀𝑛 ∈ Odd ((7 < 𝑛 ∧ 𝑛 < 𝑀) → 𝑛 ∈ GoldbachOdd )) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Axiom | ax-bgbltosilva 47684 | The binary Goldbach conjecture is valid for all even numbers less than or equal to 4x10^18, see section 2 in [OeSilva] p. 2042. Temporarily provided as "axiom". (Contributed by AV, 3-Aug-2020.) (Revised by AV, 9-Sep-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 ≤ (4 · (;10↑;18))) → 𝑁 ∈ GoldbachEven ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Axiom | ax-tgoldbachgt 47685* | Temporary duplicate of tgoldbachgt 34640, provided as "axiom" as long as this theorem is in the mathbox of Thierry Arnoux: Odd integers greater than (;10↑;27) have at least a representation as a sum of three odd primes. Final statement in section 7.4 of [Helfgott] p. 70 , expressed using the set 𝐺 of odd numbers which can be written as a sum of three odd primes. (Contributed by Thierry Arnoux, 22-Dec-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} & ⊢ 𝐺 = {𝑧 ∈ 𝑂 ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ 𝑂 ∧ 𝑞 ∈ 𝑂 ∧ 𝑟 ∈ 𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))} ⇒ ⊢ ∃𝑚 ∈ ℕ (𝑚 ≤ (;10↑;27) ∧ ∀𝑛 ∈ 𝑂 (𝑚 < 𝑛 → 𝑛 ∈ 𝐺)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | tgoldbachgtALTV 47686* | Variant of Thierry Arnoux's tgoldbachgt 34640 using the symbols Odd and GoldbachOdd: The ternary Goldbach conjecture is valid for large odd numbers (i.e. for all odd numbers greater than a fixed 𝑚). This is proven by Helfgott (see section 7.4 in [Helfgott] p. 70) for 𝑚 = 10^27. (Contributed by AV, 2-Aug-2020.) (Revised by AV, 15-Jan-2022.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ∃𝑚 ∈ ℕ (𝑚 ≤ (;10↑;27) ∧ ∀𝑛 ∈ Odd (𝑚 < 𝑛 → 𝑛 ∈ GoldbachOdd )) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | bgoldbachlt 47687* | The binary Goldbach conjecture is valid for small even numbers (i.e. for all even numbers less than or equal to a fixed big 𝑚). This is verified for m = 4 x 10^18 by Oliveira e Silva, see ax-bgbltosilva 47684. (Contributed by AV, 3-Aug-2020.) (Revised by AV, 9-Sep-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ∃𝑚 ∈ ℕ ((4 · (;10↑;18)) ≤ 𝑚 ∧ ∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven )) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Axiom | ax-hgprmladder 47688 | There is a partition ("ladder") of primes from 7 to 8.8 x 10^30 with parts ("rungs") having lengths of at least 4 and at most N - 4, see section 1.2.2 in [Helfgott] p. 4. Temporarily provided as "axiom". (Contributed by AV, 3-Aug-2020.) (Revised by AV, 9-Sep-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ∃𝑑 ∈ (ℤ≥‘3)∃𝑓 ∈ (RePart‘𝑑)(((𝑓‘0) = 7 ∧ (𝑓‘1) = ;13 ∧ (𝑓‘𝑑) = (;89 · (;10↑;29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓‘𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓‘𝑖)) < ((4 · (;10↑;18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓‘𝑖)))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | tgblthelfgott 47689 | The ternary Goldbach conjecture is valid for all odd numbers less than 8.8 x 10^30 (actually 8.875694 x 10^30, see section 1.2.2 in [Helfgott] p. 4, using bgoldbachlt 47687, ax-hgprmladder 47688 and bgoldbtbnd 47683. (Contributed by AV, 4-Aug-2020.) (Revised by AV, 9-Sep-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ Odd ∧ 7 < 𝑁 ∧ 𝑁 < (;88 · (;10↑;29))) → 𝑁 ∈ GoldbachOdd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | tgoldbachlt 47690* | The ternary Goldbach conjecture is valid for small odd numbers (i.e. for all odd numbers less than a fixed big 𝑚 greater than 8 x 10^30). This is verified for m = 8.875694 x 10^30 by Helfgott, see tgblthelfgott 47689. (Contributed by AV, 4-Aug-2020.) (Revised by AV, 9-Sep-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ∃𝑚 ∈ ℕ ((8 · (;10↑;30)) < 𝑚 ∧ ∀𝑛 ∈ Odd ((7 < 𝑛 ∧ 𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd )) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | tgoldbach 47691 | The ternary Goldbach conjecture is valid. Main theorem in [Helfgott] p. 2. This follows from tgoldbachlt 47690 and ax-tgoldbachgt 47685. (Contributed by AV, 2-Aug-2020.) (Revised by AV, 9-Sep-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ∀𝑛 ∈ Odd (7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Syntax | cclnbgr 47692 | Extend class notation with closed neighborhoods (of a vertex in a graph). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
class ClNeighbVtx | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Definition | df-clnbgr 47693* | Define the closed neighborhood resp. the class of all neighbors of a vertex (in a graph) and the vertex itself, see definition in section I.1 of [Bollobas] p. 3. The closed neighborhood of a vertex are all vertices which are connected with this vertex by an edge and the vertex itself (in contrast to an open neighborhood, see df-nbgr 29368). Alternatively, a closed neighborhood of a vertex could have been defined as its open neighborhood enhanced by the vertex itself, see dfclnbgr4 47698. This definition is applicable even for arbitrary hypergraphs. (Contributed by AV, 7-May-2025.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ClNeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ ({𝑣} ∪ {𝑛 ∈ (Vtx‘𝑔) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒})) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | clnbgrprc0 47694 | The closed neighborhood is empty if the graph 𝐺 or the vertex 𝑁 are proper classes. (Contributed by AV, 7-May-2025.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (¬ (𝐺 ∈ V ∧ 𝑁 ∈ V) → (𝐺 ClNeighbVtx 𝑁) = ∅) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | clnbgrcl 47695 | If a class 𝑋 has at least one element in its closed neighborhood, this class must be a vertex. (Contributed by AV, 7-May-2025.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) → 𝑋 ∈ 𝑉) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | clnbgrval 47696* | The closed neighborhood of a vertex 𝑉 in a graph 𝐺. (Contributed by AV, 7-May-2025.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒})) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | dfclnbgr2 47697* | Alternate definition of the closed neighborhood of a vertex breaking up the subset relationship of an unordered pair. (Contributed by AV, 7-May-2025.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)})) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | dfclnbgr4 47698 | Alternate definition of the closed neighborhood of a vertex as union of the vertex with its open neighborhood. (Contributed by AV, 8-May-2025.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | dfclnbgr3 47699* | Alternate definition of the closed neighborhood of a vertex using the edge function instead of the edges themselves (see also clnbgrval 47696). (Contributed by AV, 8-May-2025.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖)})) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | clnbgrnvtx0 47700 | If a class 𝑋 is not a vertex of a graph 𝐺, then it has an empty closed neighborhood in 𝐺. (Contributed by AV, 8-May-2025.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑋 ∉ 𝑉 → (𝐺 ClNeighbVtx 𝑋) = ∅) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |