| Metamath
Proof Explorer Theorem List (p. 477 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | 139prmALT 47601 | 139 is a prime number. In contrast to 139prm 17101, the proof of this theorem uses 3dvds2dec 16310 for checking the divisibility by 3. Although the proof using 3dvds2dec 16310 is longer (regarding size: 1849 characters compared with 1809 for 139prm 17101), the number of essential steps is smaller (301 compared with 327 for 139prm 17101). (Contributed by Mario Carneiro, 19-Feb-2014.) (Revised by AV, 18-Aug-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ ;;139 ∈ ℙ | ||
| Theorem | 31prm 47602 | 31 is a prime number. In contrast to 37prm 17098, the proof of this theorem is not based on the "blanket" prmlem2 17097, but on isprm7 16685. Although the checks for non-divisibility by the primes 7 to 23 are not needed, the proof is much longer (regarding size) than the proof of 37prm 17098 (1810 characters compared with 1213 for 37prm 17098). The number of essential steps, however, is much smaller (138 compared with 213 for 37prm 17098). (Contributed by AV, 17-Aug-2021.) (Proof modification is discouraged.) |
| ⊢ ;31 ∈ ℙ | ||
| Theorem | m5prm 47603 | The fifth Mersenne number M5 = 31 is a prime number. (Contributed by AV, 17-Aug-2021.) |
| ⊢ ((2↑5) − 1) ∈ ℙ | ||
| Theorem | 127prm 47604 | 127 is a prime number. (Contributed by AV, 16-Aug-2021.) (Proof shortened by AV, 16-Sep-2021.) |
| ⊢ ;;127 ∈ ℙ | ||
| Theorem | m7prm 47605 | The seventh Mersenne number M7 = 127 is a prime number. (Contributed by AV, 18-Aug-2021.) |
| ⊢ ((2↑7) − 1) ∈ ℙ | ||
| Theorem | m11nprm 47606 | The eleventh Mersenne number M11 = 2047 is not a prime number. (Contributed by AV, 18-Aug-2021.) |
| ⊢ ((2↑;11) − 1) = (;89 · ;23) | ||
| Theorem | mod42tp1mod8 47607 | If a number is 3 modulo 4, twice the number plus 1 is 7 modulo 8. (Contributed by AV, 19-Aug-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 mod 4) = 3) → (((2 · 𝑁) + 1) mod 8) = 7) | ||
| Theorem | sfprmdvdsmersenne 47608 | If 𝑄 is a safe prime (i.e. 𝑄 = ((2 · 𝑃) + 1) for a prime 𝑃) with 𝑄≡7 (mod 8), then 𝑄 divides the 𝑃-th Mersenne number MP. (Contributed by AV, 20-Aug-2021.) |
| ⊢ ((𝑃 ∈ ℙ ∧ (𝑄 ∈ ℙ ∧ (𝑄 mod 8) = 7 ∧ 𝑄 = ((2 · 𝑃) + 1))) → 𝑄 ∥ ((2↑𝑃) − 1)) | ||
| Theorem | sgprmdvdsmersenne 47609 | If 𝑃 is a Sophie Germain prime (i.e. 𝑄 = ((2 · 𝑃) + 1) is also prime) with 𝑃≡3 (mod 4), then 𝑄 divides the 𝑃-th Mersenne number MP. (Contributed by AV, 20-Aug-2021.) |
| ⊢ (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 3) ∧ (𝑄 = ((2 · 𝑃) + 1) ∧ 𝑄 ∈ ℙ)) → 𝑄 ∥ ((2↑𝑃) − 1)) | ||
| Theorem | lighneallem1 47610 | Lemma 1 for lighneal 47616. (Contributed by AV, 11-Aug-2021.) |
| ⊢ ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((2↑𝑁) − 1) ≠ (𝑃↑𝑀)) | ||
| Theorem | lighneallem2 47611 | Lemma 2 for lighneal 47616. (Contributed by AV, 13-Aug-2021.) |
| ⊢ (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 2 ∥ 𝑁 ∧ ((2↑𝑁) − 1) = (𝑃↑𝑀)) → 𝑀 = 1) | ||
| Theorem | lighneallem3 47612 | Lemma 3 for lighneal 47616. (Contributed by AV, 11-Aug-2021.) |
| ⊢ (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀) ∧ ((2↑𝑁) − 1) = (𝑃↑𝑀)) → 𝑀 = 1) | ||
| Theorem | lighneallem4a 47613 | Lemma 1 for lighneallem4 47615. (Contributed by AV, 16-Aug-2021.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘3) ∧ 𝑆 = (((𝐴↑𝑀) + 1) / (𝐴 + 1))) → 2 ≤ 𝑆) | ||
| Theorem | lighneallem4b 47614* | Lemma 2 for lighneallem4 47615. (Contributed by AV, 16-Aug-2021.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴↑𝑘)) ∈ (ℤ≥‘2)) | ||
| Theorem | lighneallem4 47615 | Lemma 3 for lighneal 47616. (Contributed by AV, 16-Aug-2021.) |
| ⊢ (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀) ∧ ((2↑𝑁) − 1) = (𝑃↑𝑀)) → 𝑀 = 1) | ||
| Theorem | lighneal 47616 | If a power of a prime 𝑃 (i.e. 𝑃↑𝑀) is of the form 2↑𝑁 − 1, then 𝑁 must be prime and 𝑀 must be 1. Generalization of mersenne 27145 (where 𝑀 = 1 is a prerequisite). Theorem of S. Ligh and L. Neal (1974) "A note on Mersenne mumbers", Mathematics Magazine, 47:4, 231-233. (Contributed by AV, 16-Aug-2021.) |
| ⊢ (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((2↑𝑁) − 1) = (𝑃↑𝑀)) → (𝑀 = 1 ∧ 𝑁 ∈ ℙ)) | ||
| Theorem | modexp2m1d 47617 | The square of an integer which is -1 modulo a number greater than 1 is 1 modulo the same modulus. (Contributed by AV, 5-Jul-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 1 < 𝐸) & ⊢ (𝜑 → (𝐴 mod 𝐸) = (-1 mod 𝐸)) ⇒ ⊢ (𝜑 → ((𝐴↑2) mod 𝐸) = 1) | ||
| Theorem | proththdlem 47618 | Lemma for proththd 47619. (Contributed by AV, 4-Jul-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑃 = ((𝐾 · (2↑𝑁)) + 1)) ⇒ ⊢ (𝜑 → (𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ)) | ||
| Theorem | proththd 47619* | Proth's theorem (1878). If P is a Proth number, i.e. a number of the form k2^n+1 with k less than 2^n, and if there exists an integer x for which x^((P-1)/2) is -1 modulo P, then P is prime. Such a prime is called a Proth prime. Like Pocklington's theorem (see pockthg 16884), Proth's theorem allows for a convenient method for verifying large primes. (Contributed by AV, 5-Jul-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑃 = ((𝐾 · (2↑𝑁)) + 1)) & ⊢ (𝜑 → 𝐾 < (2↑𝑁)) & ⊢ (𝜑 → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) ⇒ ⊢ (𝜑 → 𝑃 ∈ ℙ) | ||
| Theorem | 5tcu2e40 47620 | 5 times the cube of 2 is 40. (Contributed by AV, 4-Jul-2020.) |
| ⊢ (5 · (2↑3)) = ;40 | ||
| Theorem | 3exp4mod41 47621 | 3 to the fourth power is -1 modulo 41. (Contributed by AV, 5-Jul-2020.) |
| ⊢ ((3↑4) mod ;41) = (-1 mod ;41) | ||
| Theorem | 41prothprmlem1 47622 | Lemma 1 for 41prothprm 47624. (Contributed by AV, 4-Jul-2020.) |
| ⊢ 𝑃 = ;41 ⇒ ⊢ ((𝑃 − 1) / 2) = ;20 | ||
| Theorem | 41prothprmlem2 47623 | Lemma 2 for 41prothprm 47624. (Contributed by AV, 5-Jul-2020.) |
| ⊢ 𝑃 = ;41 ⇒ ⊢ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) | ||
| Theorem | 41prothprm 47624 | 41 is a Proth prime. (Contributed by AV, 5-Jul-2020.) |
| ⊢ 𝑃 = ;41 ⇒ ⊢ (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ) | ||
| Theorem | quad1 47625* | A condition for a quadratic equation with complex coefficients to have (exactly) one complex solution. (Contributed by AV, 23-Jan-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶)))) ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ ℂ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0)) | ||
| Theorem | requad01 47626* | A condition for a quadratic equation with real coefficients to have (at least) one real solution. (Contributed by AV, 23-Jan-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶)))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 0 ≤ 𝐷)) | ||
| Theorem | requad1 47627* | A condition for a quadratic equation with real coefficients to have (exactly) one real solution. (Contributed by AV, 26-Jan-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶)))) ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0)) | ||
| Theorem | requad2 47628* | A condition for a quadratic equation with real coefficients to have (exactly) two different real solutions. (Contributed by AV, 28-Jan-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶)))) ⇒ ⊢ (𝜑 → (∃!𝑝 ∈ 𝒫 ℝ((♯‘𝑝) = 2 ∧ ∀𝑥 ∈ 𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0) ↔ 0 < 𝐷)) | ||
Even and odd numbers can be characterized in many different ways. In the following, the definition of even and odd numbers is based on the fact that dividing an even number (resp. an odd number increased by 1) by 2 is an integer, see df-even 47631 and df-odd 47632. Alternate definitions resp. characterizations are provided in dfeven2 47654, dfeven3 47663, dfeven4 47643 and in dfodd2 47641, dfodd3 47655, dfodd4 47664, dfodd5 47665, dfodd6 47642. Each characterization can be useful (and used) in an appropriate context, e.g. dfodd6 47642 in opoeALTV 47688 and dfodd3 47655 in oddprmALTV 47692. Having a fixed definition for even and odd numbers, and alternate characterizations as theorems, advanced theorems about even and/or odd numbers can be expressed more explicitly, and the appropriate characterization can be chosen for their proof, which may become clearer and sometimes also shorter (see, for example, divgcdoddALTV 47687 and divgcdodd 16687). | ||
| Syntax | ceven 47629 | Extend the definition of a class to include the set of even numbers. |
| class Even | ||
| Syntax | codd 47630 | Extend the definition of a class to include the set of odd numbers. |
| class Odd | ||
| Definition | df-even 47631 | Define the set of even numbers. (Contributed by AV, 14-Jun-2020.) |
| ⊢ Even = {𝑧 ∈ ℤ ∣ (𝑧 / 2) ∈ ℤ} | ||
| Definition | df-odd 47632 | Define the set of odd numbers. (Contributed by AV, 14-Jun-2020.) |
| ⊢ Odd = {𝑧 ∈ ℤ ∣ ((𝑧 + 1) / 2) ∈ ℤ} | ||
| Theorem | iseven 47633 | The predicate "is an even number". An even number is an integer which is divisible by 2, i.e. the result of dividing the even integer by 2 is still an integer. (Contributed by AV, 14-Jun-2020.) |
| ⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ)) | ||
| Theorem | isodd 47634 | The predicate "is an odd number". An odd number is an integer which is not divisible by 2, i.e. the result of dividing the odd integer increased by 1 and then divided by 2 is still an integer. (Contributed by AV, 14-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ)) | ||
| Theorem | evenz 47635 | An even number is an integer. (Contributed by AV, 14-Jun-2020.) |
| ⊢ (𝑍 ∈ Even → 𝑍 ∈ ℤ) | ||
| Theorem | oddz 47636 | An odd number is an integer. (Contributed by AV, 14-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd → 𝑍 ∈ ℤ) | ||
| Theorem | evendiv2z 47637 | The result of dividing an even number by 2 is an integer. (Contributed by AV, 15-Jun-2020.) |
| ⊢ (𝑍 ∈ Even → (𝑍 / 2) ∈ ℤ) | ||
| Theorem | oddp1div2z 47638 | The result of dividing an odd number increased by 1 and then divided by 2 is an integer. (Contributed by AV, 15-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd → ((𝑍 + 1) / 2) ∈ ℤ) | ||
| Theorem | oddm1div2z 47639 | The result of dividing an odd number decreased by 1 and then divided by 2 is an integer. (Contributed by AV, 15-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd → ((𝑍 − 1) / 2) ∈ ℤ) | ||
| Theorem | isodd2 47640 | The predicate "is an odd number". An odd number is an integer which is not divisible by 2, i.e. the result of dividing the odd number decreased by 1 and then divided by 2 is still an integer. (Contributed by AV, 15-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 − 1) / 2) ∈ ℤ)) | ||
| Theorem | dfodd2 47641 | Alternate definition for odd numbers. (Contributed by AV, 15-Jun-2020.) |
| ⊢ Odd = {𝑧 ∈ ℤ ∣ ((𝑧 − 1) / 2) ∈ ℤ} | ||
| Theorem | dfodd6 47642* | Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.) |
| ⊢ Odd = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)} | ||
| Theorem | dfeven4 47643* | Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020.) |
| ⊢ Even = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖)} | ||
| Theorem | evenm1odd 47644 | The predecessor of an even number is odd. (Contributed by AV, 16-Jun-2020.) |
| ⊢ (𝑍 ∈ Even → (𝑍 − 1) ∈ Odd ) | ||
| Theorem | evenp1odd 47645 | The successor of an even number is odd. (Contributed by AV, 16-Jun-2020.) |
| ⊢ (𝑍 ∈ Even → (𝑍 + 1) ∈ Odd ) | ||
| Theorem | oddp1eveni 47646 | The successor of an odd number is even. (Contributed by AV, 16-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd → (𝑍 + 1) ∈ Even ) | ||
| Theorem | oddm1eveni 47647 | The predecessor of an odd number is even. (Contributed by AV, 6-Jul-2020.) |
| ⊢ (𝑍 ∈ Odd → (𝑍 − 1) ∈ Even ) | ||
| Theorem | evennodd 47648 | An even number is not an odd number. (Contributed by AV, 16-Jun-2020.) |
| ⊢ (𝑍 ∈ Even → ¬ 𝑍 ∈ Odd ) | ||
| Theorem | oddneven 47649 | An odd number is not an even number. (Contributed by AV, 16-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd → ¬ 𝑍 ∈ Even ) | ||
| Theorem | enege 47650 | The negative of an even number is even. (Contributed by AV, 20-Jun-2020.) |
| ⊢ (𝐴 ∈ Even → -𝐴 ∈ Even ) | ||
| Theorem | onego 47651 | The negative of an odd number is odd. (Contributed by AV, 20-Jun-2020.) |
| ⊢ (𝐴 ∈ Odd → -𝐴 ∈ Odd ) | ||
| Theorem | m1expevenALTV 47652 | Exponentiation of -1 by an even power. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 6-Jul-2020.) |
| ⊢ (𝑁 ∈ Even → (-1↑𝑁) = 1) | ||
| Theorem | m1expoddALTV 47653 | Exponentiation of -1 by an odd power. (Contributed by AV, 6-Jul-2020.) |
| ⊢ (𝑁 ∈ Odd → (-1↑𝑁) = -1) | ||
| Theorem | dfeven2 47654 | Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020.) |
| ⊢ Even = {𝑧 ∈ ℤ ∣ 2 ∥ 𝑧} | ||
| Theorem | dfodd3 47655 | Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.) |
| ⊢ Odd = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} | ||
| Theorem | iseven2 47656 | The predicate "is an even number". An even number is an integer which is divisible by 2. (Contributed by AV, 18-Jun-2020.) |
| ⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ 2 ∥ 𝑍)) | ||
| Theorem | isodd3 47657 | The predicate "is an odd number". An odd number is an integer which is not divisible by 2. (Contributed by AV, 18-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ¬ 2 ∥ 𝑍)) | ||
| Theorem | 2dvdseven 47658 | 2 divides an even number. (Contributed by AV, 18-Jun-2020.) |
| ⊢ (𝑍 ∈ Even → 2 ∥ 𝑍) | ||
| Theorem | m2even 47659 | A multiple of 2 is an even number. (Contributed by AV, 5-Jun-2023.) |
| ⊢ (𝑍 ∈ ℤ → (2 · 𝑍) ∈ Even ) | ||
| Theorem | 2ndvdsodd 47660 | 2 does not divide an odd number. (Contributed by AV, 18-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd → ¬ 2 ∥ 𝑍) | ||
| Theorem | 2dvdsoddp1 47661 | 2 divides an odd number increased by 1. (Contributed by AV, 18-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd → 2 ∥ (𝑍 + 1)) | ||
| Theorem | 2dvdsoddm1 47662 | 2 divides an odd number decreased by 1. (Contributed by AV, 18-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd → 2 ∥ (𝑍 − 1)) | ||
| Theorem | dfeven3 47663 | Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020.) |
| ⊢ Even = {𝑧 ∈ ℤ ∣ (𝑧 mod 2) = 0} | ||
| Theorem | dfodd4 47664 | Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.) |
| ⊢ Odd = {𝑧 ∈ ℤ ∣ (𝑧 mod 2) = 1} | ||
| Theorem | dfodd5 47665 | Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.) |
| ⊢ Odd = {𝑧 ∈ ℤ ∣ (𝑧 mod 2) ≠ 0} | ||
| Theorem | zefldiv2ALTV 47666 | The floor of an even number divided by 2 is equal to the even number divided by 2. (Contributed by AV, 7-Jun-2020.) (Revised by AV, 18-Jun-2020.) |
| ⊢ (𝑁 ∈ Even → (⌊‘(𝑁 / 2)) = (𝑁 / 2)) | ||
| Theorem | zofldiv2ALTV 47667 | The floor of an odd number divided by 2 is equal to the odd number first decreased by 1 and then divided by 2. (Contributed by AV, 7-Jun-2020.) (Revised by AV, 18-Jun-2020.) |
| ⊢ (𝑁 ∈ Odd → (⌊‘(𝑁 / 2)) = ((𝑁 − 1) / 2)) | ||
| Theorem | oddflALTV 47668 | Odd number representation by using the floor function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 18-Jun-2020.) |
| ⊢ (𝐾 ∈ Odd → 𝐾 = ((2 · (⌊‘(𝐾 / 2))) + 1)) | ||
| Theorem | iseven5 47669 | The predicate "is an even number". An even number and 2 have 2 as greatest common divisor. (Contributed by AV, 1-Jul-2020.) |
| ⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (2 gcd 𝑍) = 2)) | ||
| Theorem | isodd7 47670 | The predicate "is an odd number". An odd number and 2 have 1 as greatest common divisor. (Contributed by AV, 1-Jul-2020.) |
| ⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ (2 gcd 𝑍) = 1)) | ||
| Theorem | dfeven5 47671 | Alternate definition for even numbers. (Contributed by AV, 1-Jul-2020.) |
| ⊢ Even = {𝑧 ∈ ℤ ∣ (2 gcd 𝑧) = 2} | ||
| Theorem | dfodd7 47672 | Alternate definition for odd numbers. (Contributed by AV, 1-Jul-2020.) |
| ⊢ Odd = {𝑧 ∈ ℤ ∣ (2 gcd 𝑧) = 1} | ||
| Theorem | gcd2odd1 47673 | The greatest common divisor of an odd number and 2 is 1, i.e., 2 and any odd number are coprime. Remark: The proof using dfodd7 47672 is longer (see proof in comment)! (Contributed by AV, 5-Jun-2023.) |
| ⊢ (𝑍 ∈ Odd → (𝑍 gcd 2) = 1) | ||
| Theorem | zneoALTV 47674 | No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. (Contributed by NM, 31-Jul-2004.) (Revised by AV, 16-Jun-2020.) |
| ⊢ ((𝐴 ∈ Even ∧ 𝐵 ∈ Odd ) → 𝐴 ≠ 𝐵) | ||
| Theorem | zeoALTV 47675 | An integer is even or odd. (Contributed by NM, 1-Jan-2006.) (Revised by AV, 16-Jun-2020.) |
| ⊢ (𝑍 ∈ ℤ → (𝑍 ∈ Even ∨ 𝑍 ∈ Odd )) | ||
| Theorem | zeo2ALTV 47676 | An integer is even or odd but not both. (Contributed by Mario Carneiro, 12-Sep-2015.) (Revised by AV, 16-Jun-2020.) |
| ⊢ (𝑍 ∈ ℤ → (𝑍 ∈ Even ↔ ¬ 𝑍 ∈ Odd )) | ||
| Theorem | nneoALTV 47677 | A positive integer is even or odd but not both. (Contributed by NM, 1-Jan-2006.) (Revised by AV, 19-Jun-2020.) |
| ⊢ (𝑁 ∈ ℕ → (𝑁 ∈ Even ↔ ¬ 𝑁 ∈ Odd )) | ||
| Theorem | nneoiALTV 47678 | A positive integer is even or odd but not both. (Contributed by NM, 20-Aug-2001.) (Revised by AV, 19-Jun-2020.) |
| ⊢ 𝑁 ∈ ℕ ⇒ ⊢ (𝑁 ∈ Even ↔ ¬ 𝑁 ∈ Odd ) | ||
| Theorem | odd2np1ALTV 47679* | An integer is odd iff it is one plus twice another integer. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by AV, 19-Jun-2020.) |
| ⊢ (𝑁 ∈ ℤ → (𝑁 ∈ Odd ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)) | ||
| Theorem | oddm1evenALTV 47680 | An integer is odd iff its predecessor is even. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) |
| ⊢ (𝑁 ∈ ℤ → (𝑁 ∈ Odd ↔ (𝑁 − 1) ∈ Even )) | ||
| Theorem | oddp1evenALTV 47681 | An integer is odd iff its successor is even. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) |
| ⊢ (𝑁 ∈ ℤ → (𝑁 ∈ Odd ↔ (𝑁 + 1) ∈ Even )) | ||
| Theorem | oexpnegALTV 47682 | The exponential of the negative of a number, when the exponent is odd. (Contributed by Mario Carneiro, 25-Apr-2015.) (Revised by AV, 19-Jun-2020.) (Proof shortened by AV, 10-Jul-2022.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) → (-𝐴↑𝑁) = -(𝐴↑𝑁)) | ||
| Theorem | oexpnegnz 47683 | The exponential of the negative of a number not being 0, when the exponent is odd. (Contributed by AV, 19-Jun-2020.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) → (-𝐴↑𝑁) = -(𝐴↑𝑁)) | ||
| Theorem | bits0ALTV 47684 | Value of the zeroth bit. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) |
| ⊢ (𝑁 ∈ ℤ → (0 ∈ (bits‘𝑁) ↔ 𝑁 ∈ Odd )) | ||
| Theorem | bits0eALTV 47685 | The zeroth bit of an even number is zero. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) |
| ⊢ (𝑁 ∈ Even → ¬ 0 ∈ (bits‘𝑁)) | ||
| Theorem | bits0oALTV 47686 | The zeroth bit of an odd number is zero. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) |
| ⊢ (𝑁 ∈ Odd → 0 ∈ (bits‘𝑁)) | ||
| Theorem | divgcdoddALTV 47687 | Either 𝐴 / (𝐴 gcd 𝐵) is odd or 𝐵 / (𝐴 gcd 𝐵) is odd. (Contributed by Scott Fenton, 19-Apr-2014.) (Revised by AV, 21-Jun-2020.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / (𝐴 gcd 𝐵)) ∈ Odd ∨ (𝐵 / (𝐴 gcd 𝐵)) ∈ Odd )) | ||
| Theorem | opoeALTV 47688 | The sum of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.) |
| ⊢ ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → (𝐴 + 𝐵) ∈ Even ) | ||
| Theorem | opeoALTV 47689 | The sum of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.) |
| ⊢ ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → (𝐴 + 𝐵) ∈ Odd ) | ||
| Theorem | omoeALTV 47690 | The difference of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.) |
| ⊢ ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → (𝐴 − 𝐵) ∈ Even ) | ||
| Theorem | omeoALTV 47691 | The difference of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.) |
| ⊢ ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → (𝐴 − 𝐵) ∈ Odd ) | ||
| Theorem | oddprmALTV 47692 | A prime not equal to 2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) (Revised by AV, 21-Jun-2020.) |
| ⊢ (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ Odd ) | ||
| Theorem | 0evenALTV 47693 | 0 is an even number. (Contributed by AV, 11-Feb-2020.) (Revised by AV, 17-Jun-2020.) |
| ⊢ 0 ∈ Even | ||
| Theorem | 0noddALTV 47694 | 0 is not an odd number. (Contributed by AV, 3-Feb-2020.) (Revised by AV, 17-Jun-2020.) |
| ⊢ 0 ∉ Odd | ||
| Theorem | 1oddALTV 47695 | 1 is an odd number. (Contributed by AV, 3-Feb-2020.) (Revised by AV, 18-Jun-2020.) |
| ⊢ 1 ∈ Odd | ||
| Theorem | 1nevenALTV 47696 | 1 is not an even number. (Contributed by AV, 12-Feb-2020.) (Revised by AV, 18-Jun-2020.) |
| ⊢ 1 ∉ Even | ||
| Theorem | 2evenALTV 47697 | 2 is an even number. (Contributed by AV, 12-Feb-2020.) (Revised by AV, 18-Jun-2020.) |
| ⊢ 2 ∈ Even | ||
| Theorem | 2noddALTV 47698 | 2 is not an odd number. (Contributed by AV, 3-Feb-2020.) (Revised by AV, 18-Jun-2020.) |
| ⊢ 2 ∉ Odd | ||
| Theorem | nn0o1gt2ALTV 47699 | An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020.) (Revised by AV, 21-Jun-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Odd ) → (𝑁 = 1 ∨ 2 < 𝑁)) | ||
| Theorem | nnoALTV 47700 | An alternate characterization of an odd number greater than 1. (Contributed by AV, 2-Jun-2020.) (Revised by AV, 21-Jun-2020.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ Odd ) → ((𝑁 − 1) / 2) ∈ ℕ) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |