| Metamath
Proof Explorer Theorem List (p. 477 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
"In mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a prime number of the form Mn = 2^n-1 for some integer n. They are named after Marin Mersenne ... If n is a composite number then so is 2^n-1. Therefore, an equivalent definition of the Mersenne primes is that they are the prime numbers of the form Mp = 2^p-1 for some prime p.", see Wikipedia "Mersenne prime", 16-Aug-2021, https://en.wikipedia.org/wiki/Mersenne_prime. See also definition in [ApostolNT] p. 4. This means that if Mn = 2^n-1 is prime, than n must be prime, too, see mersenne 27158. The reverse direction is not generally valid: If p is prime, then Mp = 2^p-1 needs not be prime, e.g. M11 = 2047 = 23 x 89, see m11nprm 47611. This is an example of sgprmdvdsmersenne 47614, stating that if p with p = 3 modulo 4 (here 11) and q=2p+1 (here 23) are prime, then q divides Mp. "In number theory, a prime number p is a Sophie Germain prime if 2p+1 is also prime. The number 2p+1 associated with a Sophie Germain prime is called a safe prime.", see Wikipedia "Safe and Sophie Germain primes", 21-Aug-2021, https://en.wikipedia.org/wiki/Safe_and_Sophie_Germain_primes 47614. Hence, 11 is a Sophie Germain prime and 2x11+1=23 is its associated safe prime. By sfprmdvdsmersenne 47613, it is shown that if a safe prime q is congruent to 7 modulo 8, then it is a divisor of the Mersenne number with its matching Sophie Germain prime as exponent. The main result of this section, however, is the formal proof of a theorem of S. Ligh and L. Neal in "A note on Mersenne numbers", see lighneal 47621. | ||
| Theorem | m2prm 47601 | The second Mersenne number M2 = 3 is a prime number. (Contributed by AV, 16-Aug-2021.) |
| ⊢ ((2↑2) − 1) ∈ ℙ | ||
| Theorem | m3prm 47602 | The third Mersenne number M3 = 7 is a prime number. (Contributed by AV, 16-Aug-2021.) |
| ⊢ ((2↑3) − 1) ∈ ℙ | ||
| Theorem | flsqrt 47603 | A condition equivalent to the floor of a square root. (Contributed by AV, 17-Aug-2021.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((⌊‘(√‘𝐴)) = 𝐵 ↔ ((𝐵↑2) ≤ 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2)))) | ||
| Theorem | flsqrt5 47604 | The floor of the square root of a nonnegative number is 5 iff the number is between 25 and 35. (Contributed by AV, 17-Aug-2021.) |
| ⊢ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) → ((;25 ≤ 𝑋 ∧ 𝑋 < ;36) ↔ (⌊‘(√‘𝑋)) = 5)) | ||
| Theorem | 3ndvds4 47605 | 3 does not divide 4. (Contributed by AV, 18-Aug-2021.) |
| ⊢ ¬ 3 ∥ 4 | ||
| Theorem | 139prmALT 47606 | 139 is a prime number. In contrast to 139prm 17027, the proof of this theorem uses 3dvds2dec 16236 for checking the divisibility by 3. Although the proof using 3dvds2dec 16236 is longer (regarding size: 1849 characters compared with 1809 for 139prm 17027), the number of essential steps is smaller (301 compared with 327 for 139prm 17027). (Contributed by Mario Carneiro, 19-Feb-2014.) (Revised by AV, 18-Aug-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ ;;139 ∈ ℙ | ||
| Theorem | 31prm 47607 | 31 is a prime number. In contrast to 37prm 17024, the proof of this theorem is not based on the "blanket" prmlem2 17023, but on isprm7 16611. Although the checks for non-divisibility by the primes 7 to 23 are not needed, the proof is much longer (regarding size) than the proof of 37prm 17024 (1810 characters compared with 1213 for 37prm 17024). The number of essential steps, however, is much smaller (138 compared with 213 for 37prm 17024). (Contributed by AV, 17-Aug-2021.) (Proof modification is discouraged.) |
| ⊢ ;31 ∈ ℙ | ||
| Theorem | m5prm 47608 | The fifth Mersenne number M5 = 31 is a prime number. (Contributed by AV, 17-Aug-2021.) |
| ⊢ ((2↑5) − 1) ∈ ℙ | ||
| Theorem | 127prm 47609 | 127 is a prime number. (Contributed by AV, 16-Aug-2021.) (Proof shortened by AV, 16-Sep-2021.) |
| ⊢ ;;127 ∈ ℙ | ||
| Theorem | m7prm 47610 | The seventh Mersenne number M7 = 127 is a prime number. (Contributed by AV, 18-Aug-2021.) |
| ⊢ ((2↑7) − 1) ∈ ℙ | ||
| Theorem | m11nprm 47611 | The eleventh Mersenne number M11 = 2047 is not a prime number. (Contributed by AV, 18-Aug-2021.) |
| ⊢ ((2↑;11) − 1) = (;89 · ;23) | ||
| Theorem | mod42tp1mod8 47612 | If a number is 3 modulo 4, twice the number plus 1 is 7 modulo 8. (Contributed by AV, 19-Aug-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 mod 4) = 3) → (((2 · 𝑁) + 1) mod 8) = 7) | ||
| Theorem | sfprmdvdsmersenne 47613 | If 𝑄 is a safe prime (i.e. 𝑄 = ((2 · 𝑃) + 1) for a prime 𝑃) with 𝑄≡7 (mod 8), then 𝑄 divides the 𝑃-th Mersenne number MP. (Contributed by AV, 20-Aug-2021.) |
| ⊢ ((𝑃 ∈ ℙ ∧ (𝑄 ∈ ℙ ∧ (𝑄 mod 8) = 7 ∧ 𝑄 = ((2 · 𝑃) + 1))) → 𝑄 ∥ ((2↑𝑃) − 1)) | ||
| Theorem | sgprmdvdsmersenne 47614 | If 𝑃 is a Sophie Germain prime (i.e. 𝑄 = ((2 · 𝑃) + 1) is also prime) with 𝑃≡3 (mod 4), then 𝑄 divides the 𝑃-th Mersenne number MP. (Contributed by AV, 20-Aug-2021.) |
| ⊢ (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 3) ∧ (𝑄 = ((2 · 𝑃) + 1) ∧ 𝑄 ∈ ℙ)) → 𝑄 ∥ ((2↑𝑃) − 1)) | ||
| Theorem | lighneallem1 47615 | Lemma 1 for lighneal 47621. (Contributed by AV, 11-Aug-2021.) |
| ⊢ ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((2↑𝑁) − 1) ≠ (𝑃↑𝑀)) | ||
| Theorem | lighneallem2 47616 | Lemma 2 for lighneal 47621. (Contributed by AV, 13-Aug-2021.) |
| ⊢ (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 2 ∥ 𝑁 ∧ ((2↑𝑁) − 1) = (𝑃↑𝑀)) → 𝑀 = 1) | ||
| Theorem | lighneallem3 47617 | Lemma 3 for lighneal 47621. (Contributed by AV, 11-Aug-2021.) |
| ⊢ (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀) ∧ ((2↑𝑁) − 1) = (𝑃↑𝑀)) → 𝑀 = 1) | ||
| Theorem | lighneallem4a 47618 | Lemma 1 for lighneallem4 47620. (Contributed by AV, 16-Aug-2021.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘3) ∧ 𝑆 = (((𝐴↑𝑀) + 1) / (𝐴 + 1))) → 2 ≤ 𝑆) | ||
| Theorem | lighneallem4b 47619* | Lemma 2 for lighneallem4 47620. (Contributed by AV, 16-Aug-2021.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴↑𝑘)) ∈ (ℤ≥‘2)) | ||
| Theorem | lighneallem4 47620 | Lemma 3 for lighneal 47621. (Contributed by AV, 16-Aug-2021.) |
| ⊢ (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀) ∧ ((2↑𝑁) − 1) = (𝑃↑𝑀)) → 𝑀 = 1) | ||
| Theorem | lighneal 47621 | If a power of a prime 𝑃 (i.e. 𝑃↑𝑀) is of the form 2↑𝑁 − 1, then 𝑁 must be prime and 𝑀 must be 1. Generalization of mersenne 27158 (where 𝑀 = 1 is a prerequisite). Theorem of S. Ligh and L. Neal (1974) "A note on Mersenne mumbers", Mathematics Magazine, 47:4, 231-233. (Contributed by AV, 16-Aug-2021.) |
| ⊢ (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((2↑𝑁) − 1) = (𝑃↑𝑀)) → (𝑀 = 1 ∧ 𝑁 ∈ ℙ)) | ||
| Theorem | modexp2m1d 47622 | The square of an integer which is -1 modulo a number greater than 1 is 1 modulo the same modulus. (Contributed by AV, 5-Jul-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 1 < 𝐸) & ⊢ (𝜑 → (𝐴 mod 𝐸) = (-1 mod 𝐸)) ⇒ ⊢ (𝜑 → ((𝐴↑2) mod 𝐸) = 1) | ||
| Theorem | proththdlem 47623 | Lemma for proththd 47624. (Contributed by AV, 4-Jul-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑃 = ((𝐾 · (2↑𝑁)) + 1)) ⇒ ⊢ (𝜑 → (𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ)) | ||
| Theorem | proththd 47624* | Proth's theorem (1878). If P is a Proth number, i.e. a number of the form k2^n+1 with k less than 2^n, and if there exists an integer x for which x^((P-1)/2) is -1 modulo P, then P is prime. Such a prime is called a Proth prime. Like Pocklington's theorem (see pockthg 16810), Proth's theorem allows for a convenient method for verifying large primes. (Contributed by AV, 5-Jul-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑃 = ((𝐾 · (2↑𝑁)) + 1)) & ⊢ (𝜑 → 𝐾 < (2↑𝑁)) & ⊢ (𝜑 → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) ⇒ ⊢ (𝜑 → 𝑃 ∈ ℙ) | ||
| Theorem | 5tcu2e40 47625 | 5 times the cube of 2 is 40. (Contributed by AV, 4-Jul-2020.) |
| ⊢ (5 · (2↑3)) = ;40 | ||
| Theorem | 3exp4mod41 47626 | 3 to the fourth power is -1 modulo 41. (Contributed by AV, 5-Jul-2020.) |
| ⊢ ((3↑4) mod ;41) = (-1 mod ;41) | ||
| Theorem | 41prothprmlem1 47627 | Lemma 1 for 41prothprm 47629. (Contributed by AV, 4-Jul-2020.) |
| ⊢ 𝑃 = ;41 ⇒ ⊢ ((𝑃 − 1) / 2) = ;20 | ||
| Theorem | 41prothprmlem2 47628 | Lemma 2 for 41prothprm 47629. (Contributed by AV, 5-Jul-2020.) |
| ⊢ 𝑃 = ;41 ⇒ ⊢ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) | ||
| Theorem | 41prothprm 47629 | 41 is a Proth prime. (Contributed by AV, 5-Jul-2020.) |
| ⊢ 𝑃 = ;41 ⇒ ⊢ (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ) | ||
| Theorem | quad1 47630* | A condition for a quadratic equation with complex coefficients to have (exactly) one complex solution. (Contributed by AV, 23-Jan-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶)))) ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ ℂ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0)) | ||
| Theorem | requad01 47631* | A condition for a quadratic equation with real coefficients to have (at least) one real solution. (Contributed by AV, 23-Jan-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶)))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 0 ≤ 𝐷)) | ||
| Theorem | requad1 47632* | A condition for a quadratic equation with real coefficients to have (exactly) one real solution. (Contributed by AV, 26-Jan-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶)))) ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0)) | ||
| Theorem | requad2 47633* | A condition for a quadratic equation with real coefficients to have (exactly) two different real solutions. (Contributed by AV, 28-Jan-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶)))) ⇒ ⊢ (𝜑 → (∃!𝑝 ∈ 𝒫 ℝ((♯‘𝑝) = 2 ∧ ∀𝑥 ∈ 𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0) ↔ 0 < 𝐷)) | ||
Even and odd numbers can be characterized in many different ways. In the following, the definition of even and odd numbers is based on the fact that dividing an even number (resp. an odd number increased by 1) by 2 is an integer, see df-even 47636 and df-odd 47637. Alternate definitions resp. characterizations are provided in dfeven2 47659, dfeven3 47668, dfeven4 47648 and in dfodd2 47646, dfodd3 47660, dfodd4 47669, dfodd5 47670, dfodd6 47647. Each characterization can be useful (and used) in an appropriate context, e.g. dfodd6 47647 in opoeALTV 47693 and dfodd3 47660 in oddprmALTV 47697. Having a fixed definition for even and odd numbers, and alternate characterizations as theorems, advanced theorems about even and/or odd numbers can be expressed more explicitly, and the appropriate characterization can be chosen for their proof, which may become clearer and sometimes also shorter (see, for example, divgcdoddALTV 47692 and divgcdodd 16613). | ||
| Syntax | ceven 47634 | Extend the definition of a class to include the set of even numbers. |
| class Even | ||
| Syntax | codd 47635 | Extend the definition of a class to include the set of odd numbers. |
| class Odd | ||
| Definition | df-even 47636 | Define the set of even numbers. (Contributed by AV, 14-Jun-2020.) |
| ⊢ Even = {𝑧 ∈ ℤ ∣ (𝑧 / 2) ∈ ℤ} | ||
| Definition | df-odd 47637 | Define the set of odd numbers. (Contributed by AV, 14-Jun-2020.) |
| ⊢ Odd = {𝑧 ∈ ℤ ∣ ((𝑧 + 1) / 2) ∈ ℤ} | ||
| Theorem | iseven 47638 | The predicate "is an even number". An even number is an integer which is divisible by 2, i.e. the result of dividing the even integer by 2 is still an integer. (Contributed by AV, 14-Jun-2020.) |
| ⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ)) | ||
| Theorem | isodd 47639 | The predicate "is an odd number". An odd number is an integer which is not divisible by 2, i.e. the result of dividing the odd integer increased by 1 and then divided by 2 is still an integer. (Contributed by AV, 14-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ)) | ||
| Theorem | evenz 47640 | An even number is an integer. (Contributed by AV, 14-Jun-2020.) |
| ⊢ (𝑍 ∈ Even → 𝑍 ∈ ℤ) | ||
| Theorem | oddz 47641 | An odd number is an integer. (Contributed by AV, 14-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd → 𝑍 ∈ ℤ) | ||
| Theorem | evendiv2z 47642 | The result of dividing an even number by 2 is an integer. (Contributed by AV, 15-Jun-2020.) |
| ⊢ (𝑍 ∈ Even → (𝑍 / 2) ∈ ℤ) | ||
| Theorem | oddp1div2z 47643 | The result of dividing an odd number increased by 1 and then divided by 2 is an integer. (Contributed by AV, 15-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd → ((𝑍 + 1) / 2) ∈ ℤ) | ||
| Theorem | oddm1div2z 47644 | The result of dividing an odd number decreased by 1 and then divided by 2 is an integer. (Contributed by AV, 15-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd → ((𝑍 − 1) / 2) ∈ ℤ) | ||
| Theorem | isodd2 47645 | The predicate "is an odd number". An odd number is an integer which is not divisible by 2, i.e. the result of dividing the odd number decreased by 1 and then divided by 2 is still an integer. (Contributed by AV, 15-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 − 1) / 2) ∈ ℤ)) | ||
| Theorem | dfodd2 47646 | Alternate definition for odd numbers. (Contributed by AV, 15-Jun-2020.) |
| ⊢ Odd = {𝑧 ∈ ℤ ∣ ((𝑧 − 1) / 2) ∈ ℤ} | ||
| Theorem | dfodd6 47647* | Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.) |
| ⊢ Odd = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)} | ||
| Theorem | dfeven4 47648* | Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020.) |
| ⊢ Even = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖)} | ||
| Theorem | evenm1odd 47649 | The predecessor of an even number is odd. (Contributed by AV, 16-Jun-2020.) |
| ⊢ (𝑍 ∈ Even → (𝑍 − 1) ∈ Odd ) | ||
| Theorem | evenp1odd 47650 | The successor of an even number is odd. (Contributed by AV, 16-Jun-2020.) |
| ⊢ (𝑍 ∈ Even → (𝑍 + 1) ∈ Odd ) | ||
| Theorem | oddp1eveni 47651 | The successor of an odd number is even. (Contributed by AV, 16-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd → (𝑍 + 1) ∈ Even ) | ||
| Theorem | oddm1eveni 47652 | The predecessor of an odd number is even. (Contributed by AV, 6-Jul-2020.) |
| ⊢ (𝑍 ∈ Odd → (𝑍 − 1) ∈ Even ) | ||
| Theorem | evennodd 47653 | An even number is not an odd number. (Contributed by AV, 16-Jun-2020.) |
| ⊢ (𝑍 ∈ Even → ¬ 𝑍 ∈ Odd ) | ||
| Theorem | oddneven 47654 | An odd number is not an even number. (Contributed by AV, 16-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd → ¬ 𝑍 ∈ Even ) | ||
| Theorem | enege 47655 | The negative of an even number is even. (Contributed by AV, 20-Jun-2020.) |
| ⊢ (𝐴 ∈ Even → -𝐴 ∈ Even ) | ||
| Theorem | onego 47656 | The negative of an odd number is odd. (Contributed by AV, 20-Jun-2020.) |
| ⊢ (𝐴 ∈ Odd → -𝐴 ∈ Odd ) | ||
| Theorem | m1expevenALTV 47657 | Exponentiation of -1 by an even power. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 6-Jul-2020.) |
| ⊢ (𝑁 ∈ Even → (-1↑𝑁) = 1) | ||
| Theorem | m1expoddALTV 47658 | Exponentiation of -1 by an odd power. (Contributed by AV, 6-Jul-2020.) |
| ⊢ (𝑁 ∈ Odd → (-1↑𝑁) = -1) | ||
| Theorem | dfeven2 47659 | Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020.) |
| ⊢ Even = {𝑧 ∈ ℤ ∣ 2 ∥ 𝑧} | ||
| Theorem | dfodd3 47660 | Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.) |
| ⊢ Odd = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} | ||
| Theorem | iseven2 47661 | The predicate "is an even number". An even number is an integer which is divisible by 2. (Contributed by AV, 18-Jun-2020.) |
| ⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ 2 ∥ 𝑍)) | ||
| Theorem | isodd3 47662 | The predicate "is an odd number". An odd number is an integer which is not divisible by 2. (Contributed by AV, 18-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ¬ 2 ∥ 𝑍)) | ||
| Theorem | 2dvdseven 47663 | 2 divides an even number. (Contributed by AV, 18-Jun-2020.) |
| ⊢ (𝑍 ∈ Even → 2 ∥ 𝑍) | ||
| Theorem | m2even 47664 | A multiple of 2 is an even number. (Contributed by AV, 5-Jun-2023.) |
| ⊢ (𝑍 ∈ ℤ → (2 · 𝑍) ∈ Even ) | ||
| Theorem | 2ndvdsodd 47665 | 2 does not divide an odd number. (Contributed by AV, 18-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd → ¬ 2 ∥ 𝑍) | ||
| Theorem | 2dvdsoddp1 47666 | 2 divides an odd number increased by 1. (Contributed by AV, 18-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd → 2 ∥ (𝑍 + 1)) | ||
| Theorem | 2dvdsoddm1 47667 | 2 divides an odd number decreased by 1. (Contributed by AV, 18-Jun-2020.) |
| ⊢ (𝑍 ∈ Odd → 2 ∥ (𝑍 − 1)) | ||
| Theorem | dfeven3 47668 | Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020.) |
| ⊢ Even = {𝑧 ∈ ℤ ∣ (𝑧 mod 2) = 0} | ||
| Theorem | dfodd4 47669 | Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.) |
| ⊢ Odd = {𝑧 ∈ ℤ ∣ (𝑧 mod 2) = 1} | ||
| Theorem | dfodd5 47670 | Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.) |
| ⊢ Odd = {𝑧 ∈ ℤ ∣ (𝑧 mod 2) ≠ 0} | ||
| Theorem | zefldiv2ALTV 47671 | The floor of an even number divided by 2 is equal to the even number divided by 2. (Contributed by AV, 7-Jun-2020.) (Revised by AV, 18-Jun-2020.) |
| ⊢ (𝑁 ∈ Even → (⌊‘(𝑁 / 2)) = (𝑁 / 2)) | ||
| Theorem | zofldiv2ALTV 47672 | The floor of an odd number divided by 2 is equal to the odd number first decreased by 1 and then divided by 2. (Contributed by AV, 7-Jun-2020.) (Revised by AV, 18-Jun-2020.) |
| ⊢ (𝑁 ∈ Odd → (⌊‘(𝑁 / 2)) = ((𝑁 − 1) / 2)) | ||
| Theorem | oddflALTV 47673 | Odd number representation by using the floor function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 18-Jun-2020.) |
| ⊢ (𝐾 ∈ Odd → 𝐾 = ((2 · (⌊‘(𝐾 / 2))) + 1)) | ||
| Theorem | iseven5 47674 | The predicate "is an even number". An even number and 2 have 2 as greatest common divisor. (Contributed by AV, 1-Jul-2020.) |
| ⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (2 gcd 𝑍) = 2)) | ||
| Theorem | isodd7 47675 | The predicate "is an odd number". An odd number and 2 have 1 as greatest common divisor. (Contributed by AV, 1-Jul-2020.) |
| ⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ (2 gcd 𝑍) = 1)) | ||
| Theorem | dfeven5 47676 | Alternate definition for even numbers. (Contributed by AV, 1-Jul-2020.) |
| ⊢ Even = {𝑧 ∈ ℤ ∣ (2 gcd 𝑧) = 2} | ||
| Theorem | dfodd7 47677 | Alternate definition for odd numbers. (Contributed by AV, 1-Jul-2020.) |
| ⊢ Odd = {𝑧 ∈ ℤ ∣ (2 gcd 𝑧) = 1} | ||
| Theorem | gcd2odd1 47678 | The greatest common divisor of an odd number and 2 is 1, i.e., 2 and any odd number are coprime. Remark: The proof using dfodd7 47677 is longer (see proof in comment)! (Contributed by AV, 5-Jun-2023.) |
| ⊢ (𝑍 ∈ Odd → (𝑍 gcd 2) = 1) | ||
| Theorem | zneoALTV 47679 | No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. (Contributed by NM, 31-Jul-2004.) (Revised by AV, 16-Jun-2020.) |
| ⊢ ((𝐴 ∈ Even ∧ 𝐵 ∈ Odd ) → 𝐴 ≠ 𝐵) | ||
| Theorem | zeoALTV 47680 | An integer is even or odd. (Contributed by NM, 1-Jan-2006.) (Revised by AV, 16-Jun-2020.) |
| ⊢ (𝑍 ∈ ℤ → (𝑍 ∈ Even ∨ 𝑍 ∈ Odd )) | ||
| Theorem | zeo2ALTV 47681 | An integer is even or odd but not both. (Contributed by Mario Carneiro, 12-Sep-2015.) (Revised by AV, 16-Jun-2020.) |
| ⊢ (𝑍 ∈ ℤ → (𝑍 ∈ Even ↔ ¬ 𝑍 ∈ Odd )) | ||
| Theorem | nneoALTV 47682 | A positive integer is even or odd but not both. (Contributed by NM, 1-Jan-2006.) (Revised by AV, 19-Jun-2020.) |
| ⊢ (𝑁 ∈ ℕ → (𝑁 ∈ Even ↔ ¬ 𝑁 ∈ Odd )) | ||
| Theorem | nneoiALTV 47683 | A positive integer is even or odd but not both. (Contributed by NM, 20-Aug-2001.) (Revised by AV, 19-Jun-2020.) |
| ⊢ 𝑁 ∈ ℕ ⇒ ⊢ (𝑁 ∈ Even ↔ ¬ 𝑁 ∈ Odd ) | ||
| Theorem | odd2np1ALTV 47684* | An integer is odd iff it is one plus twice another integer. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by AV, 19-Jun-2020.) |
| ⊢ (𝑁 ∈ ℤ → (𝑁 ∈ Odd ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)) | ||
| Theorem | oddm1evenALTV 47685 | An integer is odd iff its predecessor is even. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) |
| ⊢ (𝑁 ∈ ℤ → (𝑁 ∈ Odd ↔ (𝑁 − 1) ∈ Even )) | ||
| Theorem | oddp1evenALTV 47686 | An integer is odd iff its successor is even. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) |
| ⊢ (𝑁 ∈ ℤ → (𝑁 ∈ Odd ↔ (𝑁 + 1) ∈ Even )) | ||
| Theorem | oexpnegALTV 47687 | The exponential of the negative of a number, when the exponent is odd. (Contributed by Mario Carneiro, 25-Apr-2015.) (Revised by AV, 19-Jun-2020.) (Proof shortened by AV, 10-Jul-2022.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) → (-𝐴↑𝑁) = -(𝐴↑𝑁)) | ||
| Theorem | oexpnegnz 47688 | The exponential of the negative of a number not being 0, when the exponent is odd. (Contributed by AV, 19-Jun-2020.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) → (-𝐴↑𝑁) = -(𝐴↑𝑁)) | ||
| Theorem | bits0ALTV 47689 | Value of the zeroth bit. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) |
| ⊢ (𝑁 ∈ ℤ → (0 ∈ (bits‘𝑁) ↔ 𝑁 ∈ Odd )) | ||
| Theorem | bits0eALTV 47690 | The zeroth bit of an even number is zero. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) |
| ⊢ (𝑁 ∈ Even → ¬ 0 ∈ (bits‘𝑁)) | ||
| Theorem | bits0oALTV 47691 | The zeroth bit of an odd number is zero. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) |
| ⊢ (𝑁 ∈ Odd → 0 ∈ (bits‘𝑁)) | ||
| Theorem | divgcdoddALTV 47692 | Either 𝐴 / (𝐴 gcd 𝐵) is odd or 𝐵 / (𝐴 gcd 𝐵) is odd. (Contributed by Scott Fenton, 19-Apr-2014.) (Revised by AV, 21-Jun-2020.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / (𝐴 gcd 𝐵)) ∈ Odd ∨ (𝐵 / (𝐴 gcd 𝐵)) ∈ Odd )) | ||
| Theorem | opoeALTV 47693 | The sum of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.) |
| ⊢ ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → (𝐴 + 𝐵) ∈ Even ) | ||
| Theorem | opeoALTV 47694 | The sum of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.) |
| ⊢ ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → (𝐴 + 𝐵) ∈ Odd ) | ||
| Theorem | omoeALTV 47695 | The difference of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.) |
| ⊢ ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → (𝐴 − 𝐵) ∈ Even ) | ||
| Theorem | omeoALTV 47696 | The difference of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.) |
| ⊢ ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → (𝐴 − 𝐵) ∈ Odd ) | ||
| Theorem | oddprmALTV 47697 | A prime not equal to 2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) (Revised by AV, 21-Jun-2020.) |
| ⊢ (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ Odd ) | ||
| Theorem | 0evenALTV 47698 | 0 is an even number. (Contributed by AV, 11-Feb-2020.) (Revised by AV, 17-Jun-2020.) |
| ⊢ 0 ∈ Even | ||
| Theorem | 0noddALTV 47699 | 0 is not an odd number. (Contributed by AV, 3-Feb-2020.) (Revised by AV, 17-Jun-2020.) |
| ⊢ 0 ∉ Odd | ||
| Theorem | 1oddALTV 47700 | 1 is an odd number. (Contributed by AV, 3-Feb-2020.) (Revised by AV, 18-Jun-2020.) |
| ⊢ 1 ∈ Odd | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |