![]() |
Metamath
Proof Explorer Theorem List (p. 477 of 479) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30166) |
![]() (30167-31689) |
![]() (31690-47842) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ipolublem 47601* | Lemma for ipolubdm 47602 and ipolub 47603. (Contributed by Zhi Wang, 28-Sep-2024.) |
β’ πΌ = (toIncβπΉ) & β’ (π β πΉ β π) & β’ (π β π β πΉ) & β’ β€ = (leβπΌ) β β’ ((π β§ π β πΉ) β ((βͺ π β π β§ βπ§ β πΉ (βͺ π β π§ β π β π§)) β (βπ¦ β π π¦ β€ π β§ βπ§ β πΉ (βπ¦ β π π¦ β€ π§ β π β€ π§)))) | ||
Theorem | ipolubdm 47602* | The domain of the LUB of the inclusion poset. (Contributed by Zhi Wang, 28-Sep-2024.) |
β’ πΌ = (toIncβπΉ) & β’ (π β πΉ β π) & β’ (π β π β πΉ) & β’ (π β π = (lubβπΌ)) & β’ (π β π = β© {π₯ β πΉ β£ βͺ π β π₯}) β β’ (π β (π β dom π β π β πΉ)) | ||
Theorem | ipolub 47603* | The LUB of the inclusion poset. (hypotheses "ipolub.s" and "ipolub.t" could be eliminated with π β dom π.) Could be significantly shortened if poslubdg 18366 is in quantified form. mrelatlub 18514 could potentially be shortened using this. See mrelatlubALT 47610. (Contributed by Zhi Wang, 28-Sep-2024.) |
β’ πΌ = (toIncβπΉ) & β’ (π β πΉ β π) & β’ (π β π β πΉ) & β’ (π β π = (lubβπΌ)) & β’ (π β π = β© {π₯ β πΉ β£ βͺ π β π₯}) & β’ (π β π β πΉ) β β’ (π β (πβπ) = π) | ||
Theorem | ipoglblem 47604* | Lemma for ipoglbdm 47605 and ipoglb 47606. (Contributed by Zhi Wang, 29-Sep-2024.) |
β’ πΌ = (toIncβπΉ) & β’ (π β πΉ β π) & β’ (π β π β πΉ) & β’ β€ = (leβπΌ) β β’ ((π β§ π β πΉ) β ((π β β© π β§ βπ§ β πΉ (π§ β β© π β π§ β π)) β (βπ¦ β π π β€ π¦ β§ βπ§ β πΉ (βπ¦ β π π§ β€ π¦ β π§ β€ π)))) | ||
Theorem | ipoglbdm 47605* | The domain of the GLB of the inclusion poset. (Contributed by Zhi Wang, 29-Sep-2024.) |
β’ πΌ = (toIncβπΉ) & β’ (π β πΉ β π) & β’ (π β π β πΉ) & β’ (π β πΊ = (glbβπΌ)) & β’ (π β π = βͺ {π₯ β πΉ β£ π₯ β β© π}) β β’ (π β (π β dom πΊ β π β πΉ)) | ||
Theorem | ipoglb 47606* | The GLB of the inclusion poset. (hypotheses "ipolub.s" and "ipoglb.t" could be eliminated with π β dom πΊ.) Could be significantly shortened if posglbdg 18367 is in quantified form. mrelatglb 18512 could potentially be shortened using this. See mrelatglbALT 47611. (Contributed by Zhi Wang, 29-Sep-2024.) |
β’ πΌ = (toIncβπΉ) & β’ (π β πΉ β π) & β’ (π β π β πΉ) & β’ (π β πΊ = (glbβπΌ)) & β’ (π β π = βͺ {π₯ β πΉ β£ π₯ β β© π}) & β’ (π β π β πΉ) β β’ (π β (πΊβπ) = π) | ||
Theorem | ipolub0 47607 | The LUB of the empty set is the intersection of the base. (Contributed by Zhi Wang, 30-Sep-2024.) |
β’ πΌ = (toIncβπΉ) & β’ (π β π = (lubβπΌ)) & β’ (π β β© πΉ β πΉ) & β’ (π β πΉ β π) β β’ (π β (πββ ) = β© πΉ) | ||
Theorem | ipolub00 47608 | The LUB of the empty set is the empty set if it is contained. (Contributed by Zhi Wang, 30-Sep-2024.) |
β’ πΌ = (toIncβπΉ) & β’ (π β π = (lubβπΌ)) & β’ (π β β β πΉ) β β’ (π β (πββ ) = β ) | ||
Theorem | ipoglb0 47609 | The GLB of the empty set is the union of the base. (Contributed by Zhi Wang, 30-Sep-2024.) |
β’ πΌ = (toIncβπΉ) & β’ (π β πΊ = (glbβπΌ)) & β’ (π β βͺ πΉ β πΉ) β β’ (π β (πΊββ ) = βͺ πΉ) | ||
Theorem | mrelatlubALT 47610 | Least upper bounds in a Moore space are realized by the closure of the union. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Proof shortened by Zhi Wang, 29-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ πΌ = (toIncβπΆ) & β’ πΉ = (mrClsβπΆ) & β’ πΏ = (lubβπΌ) β β’ ((πΆ β (Mooreβπ) β§ π β πΆ) β (πΏβπ) = (πΉββͺ π)) | ||
Theorem | mrelatglbALT 47611 | Greatest lower bounds in a Moore space are realized by intersections. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Proof shortened by Zhi Wang, 29-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ πΌ = (toIncβπΆ) & β’ πΊ = (glbβπΌ) β β’ ((πΆ β (Mooreβπ) β§ π β πΆ β§ π β β ) β (πΊβπ) = β© π) | ||
Theorem | mreclat 47612 | A Moore space is a complete lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024.) |
β’ πΌ = (toIncβπΆ) β β’ (πΆ β (Mooreβπ) β πΌ β CLat) | ||
Theorem | topclat 47613 | A topology is a complete lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024.) |
β’ πΌ = (toIncβπ½) β β’ (π½ β Top β πΌ β CLat) | ||
Theorem | toplatglb0 47614 | The empty intersection in a topology is realized by the base set. (Contributed by Zhi Wang, 30-Sep-2024.) |
β’ πΌ = (toIncβπ½) & β’ (π β π½ β Top) & β’ πΊ = (glbβπΌ) β β’ (π β (πΊββ ) = βͺ π½) | ||
Theorem | toplatlub 47615 | Least upper bounds in a topology are realized by unions. (Contributed by Zhi Wang, 30-Sep-2024.) |
β’ πΌ = (toIncβπ½) & β’ (π β π½ β Top) & β’ (π β π β π½) & β’ π = (lubβπΌ) β β’ (π β (πβπ) = βͺ π) | ||
Theorem | toplatglb 47616 | Greatest lower bounds in a topology are realized by the interior of the intersection. (Contributed by Zhi Wang, 30-Sep-2024.) |
β’ πΌ = (toIncβπ½) & β’ (π β π½ β Top) & β’ (π β π β π½) & β’ πΊ = (glbβπΌ) & β’ (π β π β β ) β β’ (π β (πΊβπ) = ((intβπ½)ββ© π)) | ||
Theorem | toplatjoin 47617 | Joins in a topology are realized by unions. (Contributed by Zhi Wang, 30-Sep-2024.) |
β’ πΌ = (toIncβπ½) & β’ (π β π½ β Top) & β’ (π β π΄ β π½) & β’ (π β π΅ β π½) & β’ β¨ = (joinβπΌ) β β’ (π β (π΄ β¨ π΅) = (π΄ βͺ π΅)) | ||
Theorem | toplatmeet 47618 | Meets in a topology are realized by intersections. (Contributed by Zhi Wang, 30-Sep-2024.) |
β’ πΌ = (toIncβπ½) & β’ (π β π½ β Top) & β’ (π β π΄ β π½) & β’ (π β π΅ β π½) & β’ β§ = (meetβπΌ) β β’ (π β (π΄ β§ π΅) = (π΄ β© π΅)) | ||
Theorem | topdlat 47619 | A topology is a distributive lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024.) |
β’ πΌ = (toIncβπ½) β β’ (π½ β Top β πΌ β DLat) | ||
Theorem | catprslem 47620* | Lemma for catprs 47621. (Contributed by Zhi Wang, 18-Sep-2024.) |
β’ (π β βπ₯ β π΅ βπ¦ β π΅ (π₯ β€ π¦ β (π₯π»π¦) β β )) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β (π β€ π β (ππ»π) β β )) | ||
Theorem | catprs 47621* | A preorder can be extracted from a category. See catprs2 47622 for more details. (Contributed by Zhi Wang, 18-Sep-2024.) |
β’ (π β βπ₯ β π΅ βπ¦ β π΅ (π₯ β€ π¦ β (π₯π»π¦) β β )) & β’ (π β π΅ = (BaseβπΆ)) & β’ (π β π» = (Hom βπΆ)) & β’ (π β πΆ β Cat) β β’ ((π β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β (π β€ π β§ ((π β€ π β§ π β€ π) β π β€ π))) | ||
Theorem | catprs2 47622* | A category equipped with the induced preorder, where an object π₯ is defined to be "less than or equal to" π¦ iff there is a morphism from π₯ to π¦, is a preordered set, or a proset. The category might not be thin. See catprsc 47623 and catprsc2 47624 for constructions satisfying the hypothesis "catprs.1". See catprs 47621 for a more primitive version. See prsthinc 47664 for constructing a thin category from a proset. (Contributed by Zhi Wang, 18-Sep-2024.) |
β’ (π β βπ₯ β π΅ βπ¦ β π΅ (π₯ β€ π¦ β (π₯π»π¦) β β )) & β’ (π β π΅ = (BaseβπΆ)) & β’ (π β π» = (Hom βπΆ)) & β’ (π β πΆ β Cat) & β’ (π β β€ = (leβπΆ)) β β’ (π β πΆ β Proset ) | ||
Theorem | catprsc 47623* | A construction of the preorder induced by a category. See catprs2 47622 for details. See also catprsc2 47624 for an alternate construction. (Contributed by Zhi Wang, 18-Sep-2024.) |
β’ (π β β€ = {β¨π₯, π¦β© β£ (π₯ β π΅ β§ π¦ β π΅ β§ (π₯π»π¦) β β )}) β β’ (π β βπ§ β π΅ βπ€ β π΅ (π§ β€ π€ β (π§π»π€) β β )) | ||
Theorem | catprsc2 47624* | An alternate construction of the preorder induced by a category. See catprs2 47622 for details. See also catprsc 47623 for a different construction. The two constructions are different because df-cat 17611 does not require the domain of π» to be π΅ Γ π΅. (Contributed by Zhi Wang, 23-Sep-2024.) |
β’ (π β β€ = {β¨π₯, π¦β© β£ (π₯π»π¦) β β }) β β’ (π β βπ§ β π΅ βπ€ β π΅ (π§ β€ π€ β (π§π»π€) β β )) | ||
Theorem | endmndlem 47625 | A diagonal hom-set in a category equipped with the restriction of the composition has a structure of monoid. See also df-mndtc 47694 for converting a monoid to a category. Lemma for bj-endmnd 36194. (Contributed by Zhi Wang, 25-Sep-2024.) |
β’ π΅ = (BaseβπΆ) & β’ π» = (Hom βπΆ) & β’ Β· = (compβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ (π β (ππ»π) = (Baseβπ)) & β’ (π β (β¨π, πβ© Β· π) = (+gβπ)) β β’ (π β π β Mnd) | ||
Theorem | idmon 47626 | An identity arrow, or an identity morphism, is a monomorphism. (Contributed by Zhi Wang, 21-Sep-2024.) |
β’ π΅ = (BaseβπΆ) & β’ π» = (Hom βπΆ) & β’ 1 = (IdβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ π = (MonoβπΆ) β β’ (π β ( 1 βπ) β (πππ)) | ||
Theorem | idepi 47627 | An identity arrow, or an identity morphism, is an epimorphism. (Contributed by Zhi Wang, 21-Sep-2024.) |
β’ π΅ = (BaseβπΆ) & β’ π» = (Hom βπΆ) & β’ 1 = (IdβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) & β’ πΈ = (EpiβπΆ) β β’ (π β ( 1 βπ) β (ππΈπ)) | ||
Theorem | funcf2lem 47628* | A utility theorem for proving equivalence of "is a functor". (Contributed by Zhi Wang, 1-Oct-2024.) |
β’ (πΊ β Xπ§ β (π΅ Γ π΅)(((πΉβ(1st βπ§))π½(πΉβ(2nd βπ§))) βm (π»βπ§)) β (πΊ β V β§ πΊ Fn (π΅ Γ π΅) β§ βπ₯ β π΅ βπ¦ β π΅ (π₯πΊπ¦):(π₯π»π¦)βΆ((πΉβπ₯)π½(πΉβπ¦)))) | ||
Syntax | cthinc 47629 | Extend class notation with the class of thin categories. |
class ThinCat | ||
Definition | df-thinc 47630* | Definition of the class of thin categories, or posetal categories, whose hom-sets each contain at most one morphism. Example 3.26(2) of [Adamek] p. 33. "ThinCat" was taken instead of "PosCat" because the latter might mean the category of posets. (Contributed by Zhi Wang, 17-Sep-2024.) |
β’ ThinCat = {π β Cat β£ [(Baseβπ) / π][(Hom βπ) / β]βπ₯ β π βπ¦ β π β*π π β (π₯βπ¦)} | ||
Theorem | isthinc 47631* | The predicate "is a thin category". (Contributed by Zhi Wang, 17-Sep-2024.) |
β’ π΅ = (BaseβπΆ) & β’ π» = (Hom βπΆ) β β’ (πΆ β ThinCat β (πΆ β Cat β§ βπ₯ β π΅ βπ¦ β π΅ β*π π β (π₯π»π¦))) | ||
Theorem | isthinc2 47632* | A thin category is a category in which all hom-sets have cardinality less than or equal to the cardinality of 1o. (Contributed by Zhi Wang, 17-Sep-2024.) |
β’ π΅ = (BaseβπΆ) & β’ π» = (Hom βπΆ) β β’ (πΆ β ThinCat β (πΆ β Cat β§ βπ₯ β π΅ βπ¦ β π΅ (π₯π»π¦) βΌ 1o)) | ||
Theorem | isthinc3 47633* | A thin category is a category in which, given a pair of objects π₯ and π¦ and any two morphisms π, π from π₯ to π¦, the morphisms are equal. (Contributed by Zhi Wang, 17-Sep-2024.) |
β’ π΅ = (BaseβπΆ) & β’ π» = (Hom βπΆ) β β’ (πΆ β ThinCat β (πΆ β Cat β§ βπ₯ β π΅ βπ¦ β π΅ βπ β (π₯π»π¦)βπ β (π₯π»π¦)π = π)) | ||
Theorem | thincc 47634 | A thin category is a category. (Contributed by Zhi Wang, 17-Sep-2024.) |
β’ (πΆ β ThinCat β πΆ β Cat) | ||
Theorem | thinccd 47635 | A thin category is a category (deduction form). (Contributed by Zhi Wang, 24-Sep-2024.) |
β’ (π β πΆ β ThinCat) β β’ (π β πΆ β Cat) | ||
Theorem | thincssc 47636 | A thin category is a category. (Contributed by Zhi Wang, 17-Sep-2024.) |
β’ ThinCat β Cat | ||
Theorem | isthincd2lem1 47637* | Lemma for isthincd2 47648 and thincmo2 47638. (Contributed by Zhi Wang, 17-Sep-2024.) |
β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β πΉ β (ππ»π)) & β’ (π β πΊ β (ππ»π)) & β’ (π β βπ₯ β π΅ βπ¦ β π΅ β*π π β (π₯π»π¦)) β β’ (π β πΉ = πΊ) | ||
Theorem | thincmo2 47638 | Morphisms in the same hom-set are identical. (Contributed by Zhi Wang, 17-Sep-2024.) |
β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β πΉ β (ππ»π)) & β’ (π β πΊ β (ππ»π)) & β’ π΅ = (BaseβπΆ) & β’ π» = (Hom βπΆ) & β’ (π β πΆ β ThinCat) β β’ (π β πΉ = πΊ) | ||
Theorem | thincmo 47639* | There is at most one morphism in each hom-set. (Contributed by Zhi Wang, 21-Sep-2024.) |
β’ (π β πΆ β ThinCat) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ π΅ = (BaseβπΆ) & β’ π» = (Hom βπΆ) β β’ (π β β*π π β (ππ»π)) | ||
Theorem | thincmoALT 47640* | Alternate proof for thincmo 47639. (Contributed by Zhi Wang, 21-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ (π β πΆ β ThinCat) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ π΅ = (BaseβπΆ) & β’ π» = (Hom βπΆ) β β’ (π β β*π π β (ππ»π)) | ||
Theorem | thincmod 47641* | At most one morphism in each hom-set (deduction form). (Contributed by Zhi Wang, 21-Sep-2024.) |
β’ (π β πΆ β ThinCat) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π΅ = (BaseβπΆ)) & β’ (π β π» = (Hom βπΆ)) β β’ (π β β*π π β (ππ»π)) | ||
Theorem | thincn0eu 47642* | In a thin category, a hom-set being non-empty is equivalent to having a unique element. (Contributed by Zhi Wang, 21-Sep-2024.) |
β’ (π β πΆ β ThinCat) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π΅ = (BaseβπΆ)) & β’ (π β π» = (Hom βπΆ)) β β’ (π β ((ππ»π) β β β β!π π β (ππ»π))) | ||
Theorem | thincid 47643 | In a thin category, a morphism from an object to itself is an identity morphism. (Contributed by Zhi Wang, 24-Sep-2024.) |
β’ (π β πΆ β ThinCat) & β’ π΅ = (BaseβπΆ) & β’ π» = (Hom βπΆ) & β’ (π β π β π΅) & β’ 1 = (IdβπΆ) & β’ (π β πΉ β (ππ»π)) β β’ (π β πΉ = ( 1 βπ)) | ||
Theorem | thincmon 47644 | In a thin category, all morphisms are monomorphisms. The converse does not hold. See grptcmon 47706. (Contributed by Zhi Wang, 24-Sep-2024.) |
β’ (π β πΆ β ThinCat) & β’ π΅ = (BaseβπΆ) & β’ π» = (Hom βπΆ) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ π = (MonoβπΆ) β β’ (π β (πππ) = (ππ»π)) | ||
Theorem | thincepi 47645 | In a thin category, all morphisms are epimorphisms. The converse does not hold. See grptcepi 47707. (Contributed by Zhi Wang, 24-Sep-2024.) |
β’ (π β πΆ β ThinCat) & β’ π΅ = (BaseβπΆ) & β’ π» = (Hom βπΆ) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ πΈ = (EpiβπΆ) β β’ (π β (ππΈπ) = (ππ»π)) | ||
Theorem | isthincd2lem2 47646* | Lemma for isthincd2 47648. (Contributed by Zhi Wang, 17-Sep-2024.) |
β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β πΉ β (ππ»π)) & β’ (π β πΊ β (ππ»π)) & β’ (π β βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ βπ β (π₯π»π¦)βπ β (π¦π»π§)(π(β¨π₯, π¦β© Β· π§)π) β (π₯π»π§)) β β’ (π β (πΊ(β¨π, πβ© Β· π)πΉ) β (ππ»π)) | ||
Theorem | isthincd 47647* | The predicate "is a thin category" (deduction form). (Contributed by Zhi Wang, 17-Sep-2024.) |
β’ (π β π΅ = (BaseβπΆ)) & β’ (π β π» = (Hom βπΆ)) & β’ ((π β§ (π₯ β π΅ β§ π¦ β π΅)) β β*π π β (π₯π»π¦)) & β’ (π β πΆ β Cat) β β’ (π β πΆ β ThinCat) | ||
Theorem | isthincd2 47648* | The predicate "πΆ is a thin category" without knowing πΆ is a category (deduction form). The identity arrow operator is also provided as a byproduct. (Contributed by Zhi Wang, 17-Sep-2024.) |
β’ (π β π΅ = (BaseβπΆ)) & β’ (π β π» = (Hom βπΆ)) & β’ ((π β§ (π₯ β π΅ β§ π¦ β π΅)) β β*π π β (π₯π»π¦)) & β’ (π β Β· = (compβπΆ)) & β’ (π β πΆ β π) & β’ (π β ((π₯ β π΅ β§ π¦ β π΅ β§ π§ β π΅) β§ (π β (π₯π»π¦) β§ π β (π¦π»π§)))) & β’ ((π β§ π¦ β π΅) β 1 β (π¦π»π¦)) & β’ ((π β§ π) β (π(β¨π₯, π¦β© Β· π§)π) β (π₯π»π§)) β β’ (π β (πΆ β ThinCat β§ (IdβπΆ) = (π¦ β π΅ β¦ 1 ))) | ||
Theorem | oppcthin 47649 | The opposite category of a thin category is thin. (Contributed by Zhi Wang, 29-Sep-2024.) |
β’ π = (oppCatβπΆ) β β’ (πΆ β ThinCat β π β ThinCat) | ||
Theorem | subthinc 47650 | A subcategory of a thin category is thin. (Contributed by Zhi Wang, 30-Sep-2024.) |
β’ π· = (πΆ βΎcat π½) & β’ (π β π½ β (SubcatβπΆ)) & β’ (π β πΆ β ThinCat) β β’ (π β π· β ThinCat) | ||
Theorem | functhinclem1 47651* | Lemma for functhinc 47655. Given the object part, there is only one possible morphism part such that the mapped morphism is in its corresponding hom-set. (Contributed by Zhi Wang, 1-Oct-2024.) |
β’ π΅ = (Baseβπ·) & β’ πΆ = (BaseβπΈ) & β’ π» = (Hom βπ·) & β’ π½ = (Hom βπΈ) & β’ (π β πΈ β ThinCat) & β’ (π β πΉ:π΅βΆπΆ) & β’ πΎ = (π₯ β π΅, π¦ β π΅ β¦ ((π₯π»π¦) Γ ((πΉβπ₯)π½(πΉβπ¦)))) & β’ ((π β§ (π§ β π΅ β§ π€ β π΅)) β (((πΉβπ§)π½(πΉβπ€)) = β β (π§π»π€) = β )) β β’ (π β ((πΊ β V β§ πΊ Fn (π΅ Γ π΅) β§ βπ§ β π΅ βπ€ β π΅ (π§πΊπ€):(π§π»π€)βΆ((πΉβπ§)π½(πΉβπ€))) β πΊ = πΎ)) | ||
Theorem | functhinclem2 47652* | Lemma for functhinc 47655. (Contributed by Zhi Wang, 1-Oct-2024.) |
β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β βπ₯ β π΅ βπ¦ β π΅ (((πΉβπ₯)π½(πΉβπ¦)) = β β (π₯π»π¦) = β )) β β’ (π β (((πΉβπ)π½(πΉβπ)) = β β (ππ»π) = β )) | ||
Theorem | functhinclem3 47653* | Lemma for functhinc 47655. The mapped morphism is in its corresponding hom-set. (Contributed by Zhi Wang, 1-Oct-2024.) |
β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β (ππ»π)) & β’ (π β πΊ = (π₯ β π΅, π¦ β π΅ β¦ ((π₯π»π¦) Γ ((πΉβπ₯)π½(πΉβπ¦))))) & β’ (π β (((πΉβπ)π½(πΉβπ)) = β β (ππ»π) = β )) & β’ (π β β*π π β ((πΉβπ)π½(πΉβπ))) β β’ (π β ((ππΊπ)βπ) β ((πΉβπ)π½(πΉβπ))) | ||
Theorem | functhinclem4 47654* | Lemma for functhinc 47655. Other requirements on the morphism part are automatically satisfied. (Contributed by Zhi Wang, 1-Oct-2024.) |
β’ π΅ = (Baseβπ·) & β’ πΆ = (BaseβπΈ) & β’ π» = (Hom βπ·) & β’ π½ = (Hom βπΈ) & β’ (π β π· β Cat) & β’ (π β πΈ β ThinCat) & β’ (π β πΉ:π΅βΆπΆ) & β’ πΎ = (π₯ β π΅, π¦ β π΅ β¦ ((π₯π»π¦) Γ ((πΉβπ₯)π½(πΉβπ¦)))) & β’ (π β βπ§ β π΅ βπ€ β π΅ (((πΉβπ§)π½(πΉβπ€)) = β β (π§π»π€) = β )) & β’ 1 = (Idβπ·) & β’ πΌ = (IdβπΈ) & β’ Β· = (compβπ·) & β’ π = (compβπΈ) β β’ ((π β§ πΊ = πΎ) β βπ β π΅ (((ππΊπ)β( 1 βπ)) = (πΌβ(πΉβπ)) β§ βπ β π΅ βπ β π΅ βπ β (ππ»π)βπ β (ππ»π)((ππΊπ)β(π(β¨π, πβ© Β· π)π)) = (((ππΊπ)βπ)(β¨(πΉβπ), (πΉβπ)β©π(πΉβπ))((ππΊπ)βπ)))) | ||
Theorem | functhinc 47655* | A functor to a thin category is determined entirely by the object part. The hypothesis "functhinc.1" is related to a monotone function if preorders induced by the categories are considered (catprs2 47622). (Contributed by Zhi Wang, 1-Oct-2024.) |
β’ π΅ = (Baseβπ·) & β’ πΆ = (BaseβπΈ) & β’ π» = (Hom βπ·) & β’ π½ = (Hom βπΈ) & β’ (π β π· β Cat) & β’ (π β πΈ β ThinCat) & β’ (π β πΉ:π΅βΆπΆ) & β’ πΎ = (π₯ β π΅, π¦ β π΅ β¦ ((π₯π»π¦) Γ ((πΉβπ₯)π½(πΉβπ¦)))) & β’ (π β βπ§ β π΅ βπ€ β π΅ (((πΉβπ§)π½(πΉβπ€)) = β β (π§π»π€) = β )) β β’ (π β (πΉ(π· Func πΈ)πΊ β πΊ = πΎ)) | ||
Theorem | fullthinc 47656* | A functor to a thin category is full iff empty hom-sets are mapped to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024.) |
β’ π΅ = (BaseβπΆ) & β’ π½ = (Hom βπ·) & β’ π» = (Hom βπΆ) & β’ (π β π· β ThinCat) & β’ (π β πΉ(πΆ Func π·)πΊ) β β’ (π β (πΉ(πΆ Full π·)πΊ β βπ₯ β π΅ βπ¦ β π΅ ((π₯π»π¦) = β β ((πΉβπ₯)π½(πΉβπ¦)) = β ))) | ||
Theorem | fullthinc2 47657 | A full functor to a thin category maps empty hom-sets to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024.) |
β’ π΅ = (BaseβπΆ) & β’ π½ = (Hom βπ·) & β’ π» = (Hom βπΆ) & β’ (π β π· β ThinCat) & β’ (π β πΉ(πΆ Full π·)πΊ) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β ((ππ»π) = β β ((πΉβπ)π½(πΉβπ)) = β )) | ||
Theorem | thincfth 47658 | A functor from a thin category is faithful. (Contributed by Zhi Wang, 1-Oct-2024.) |
β’ (π β πΆ β ThinCat) & β’ (π β πΉ(πΆ Func π·)πΊ) β β’ (π β πΉ(πΆ Faith π·)πΊ) | ||
Theorem | thincciso 47659* | Two thin categories are isomorphic iff the induced preorders are order-isomorphic. Example 3.26(2) of [Adamek] p. 33. (Contributed by Zhi Wang, 16-Oct-2024.) |
β’ πΆ = (CatCatβπ) & β’ π΅ = (BaseβπΆ) & β’ π = (Baseβπ) & β’ π = (Baseβπ) & β’ π» = (Hom βπ) & β’ π½ = (Hom βπ) & β’ (π β π β π) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β ThinCat) & β’ (π β π β ThinCat) β β’ (π β (π( βπ βπΆ)π β βπ(βπ₯ β π βπ¦ β π ((π₯π»π¦) = β β ((πβπ₯)π½(πβπ¦)) = β ) β§ π:π β1-1-ontoβπ))) | ||
Theorem | 0thincg 47660 | Any structure with an empty set of objects is a thin category. (Contributed by Zhi Wang, 17-Sep-2024.) |
β’ ((πΆ β π β§ β = (BaseβπΆ)) β πΆ β ThinCat) | ||
Theorem | 0thinc 47661 | The empty category (see 0cat 17632) is thin. (Contributed by Zhi Wang, 17-Sep-2024.) |
β’ β β ThinCat | ||
Theorem | indthinc 47662* | An indiscrete category in which all hom-sets have exactly one morphism is a thin category. Constructed here is an indiscrete category where all morphisms are β . This is a special case of prsthinc 47664, where β€ = (π΅ Γ π΅). This theorem also implies a functor from the category of sets to the category of small categories. (Contributed by Zhi Wang, 17-Sep-2024.) (Proof shortened by Zhi Wang, 19-Sep-2024.) |
β’ (π β π΅ = (BaseβπΆ)) & β’ (π β ((π΅ Γ π΅) Γ {1o}) = (Hom βπΆ)) & β’ (π β β = (compβπΆ)) & β’ (π β πΆ β π) β β’ (π β (πΆ β ThinCat β§ (IdβπΆ) = (π¦ β π΅ β¦ β ))) | ||
Theorem | indthincALT 47663* | An alternate proof for indthinc 47662 assuming more axioms including ax-pow 5363 and ax-un 7724. (Contributed by Zhi Wang, 17-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ (π β π΅ = (BaseβπΆ)) & β’ (π β ((π΅ Γ π΅) Γ {1o}) = (Hom βπΆ)) & β’ (π β β = (compβπΆ)) & β’ (π β πΆ β π) β β’ (π β (πΆ β ThinCat β§ (IdβπΆ) = (π¦ β π΅ β¦ β ))) | ||
Theorem | prsthinc 47664* | Preordered sets as categories. Similar to example 3.3(4.d) of [Adamek] p. 24, but the hom-sets are not pairwise disjoint. One can define a functor from the category of prosets to the category of small thin categories. See catprs 47621 and catprs2 47622 for inducing a preorder from a category. Example 3.26(2) of [Adamek] p. 33 indicates that it induces a bijection from the equivalence class of isomorphic small thin categories to the equivalence class of order-isomorphic preordered sets. (Contributed by Zhi Wang, 18-Sep-2024.) |
β’ (π β π΅ = (BaseβπΆ)) & β’ (π β ( β€ Γ {1o}) = (Hom βπΆ)) & β’ (π β β = (compβπΆ)) & β’ (π β β€ = (leβπΆ)) & β’ (π β πΆ β Proset ) β β’ (π β (πΆ β ThinCat β§ (IdβπΆ) = (π¦ β π΅ β¦ β ))) | ||
Theorem | setcthin 47665* | A category of sets all of whose objects contain at most one element is thin. (Contributed by Zhi Wang, 20-Sep-2024.) |
β’ (π β πΆ = (SetCatβπ)) & β’ (π β π β π) & β’ (π β βπ₯ β π β*π π β π₯) β β’ (π β πΆ β ThinCat) | ||
Theorem | setc2othin 47666 | The category (SetCatβ2o) is thin. A special case of setcthin 47665. (Contributed by Zhi Wang, 20-Sep-2024.) |
β’ (SetCatβ2o) β ThinCat | ||
Theorem | thincsect 47667 | In a thin category, one morphism is a section of another iff they are pointing towards each other. (Contributed by Zhi Wang, 24-Sep-2024.) |
β’ (π β πΆ β ThinCat) & β’ π΅ = (BaseβπΆ) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ π = (SectβπΆ) & β’ π» = (Hom βπΆ) β β’ (π β (πΉ(πππ)πΊ β (πΉ β (ππ»π) β§ πΊ β (ππ»π)))) | ||
Theorem | thincsect2 47668 | In a thin category, πΉ is a section of πΊ iff πΊ is a section of πΉ. (Contributed by Zhi Wang, 24-Sep-2024.) |
β’ (π β πΆ β ThinCat) & β’ π΅ = (BaseβπΆ) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ π = (SectβπΆ) β β’ (π β (πΉ(πππ)πΊ β πΊ(πππ)πΉ)) | ||
Theorem | thincinv 47669 | In a thin category, πΉ is an inverse of πΊ iff πΉ is a section of πΊ (Contributed by Zhi Wang, 24-Sep-2024.) |
β’ (π β πΆ β ThinCat) & β’ π΅ = (BaseβπΆ) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ π = (SectβπΆ) & β’ π = (InvβπΆ) β β’ (π β (πΉ(πππ)πΊ β πΉ(πππ)πΊ)) | ||
Theorem | thinciso 47670 | In a thin category, πΉ:πβΆπ is an isomorphism iff there is a morphism from π to π. (Contributed by Zhi Wang, 25-Sep-2024.) |
β’ (π β πΆ β ThinCat) & β’ π΅ = (BaseβπΆ) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ π» = (Hom βπΆ) & β’ πΌ = (IsoβπΆ) & β’ (π β πΉ β (ππ»π)) β β’ (π β (πΉ β (ππΌπ) β (ππ»π) β β )) | ||
Theorem | thinccic 47671 | In a thin category, two objects are isomorphic iff there are morphisms between them in both directions. (Contributed by Zhi Wang, 25-Sep-2024.) |
β’ (π β πΆ β ThinCat) & β’ π΅ = (BaseβπΆ) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ π» = (Hom βπΆ) β β’ (π β (π( βπ βπΆ)π β ((ππ»π) β β β§ (ππ»π) β β ))) | ||
Syntax | cprstc 47672 | Class function defining preordered sets as categories. |
class ProsetToCat | ||
Definition | df-prstc 47673 |
Definition of the function converting a preordered set to a category.
Justified by prsthinc 47664.
This definition is somewhat arbitrary. Example 3.3(4.d) of [Adamek] p. 24 demonstrates an alternate definition with pairwise disjoint hom-sets. The behavior of the function is defined entirely, up to isomorphism, by prstcnid 47676, prstchom 47687, and prstcthin 47686. Other important properties include prstcbas 47677, prstcleval 47678, prstcle 47680, prstcocval 47681, prstcoc 47683, prstchom2 47688, and prstcprs 47685. Use those instead. Note that the defining property prstchom 47687 is equivalent to prstchom2 47688 given prstcthin 47686. See thincn0eu 47642 for justification. "ProsetToCat" was taken instead of "ProsetCat" because the latter might mean the category of preordered sets (classes). However, "ProsetToCat" seems too long. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.) |
β’ ProsetToCat = (π β Proset β¦ ((π sSet β¨(Hom βndx), ((leβπ) Γ {1o})β©) sSet β¨(compβndx), β β©)) | ||
Theorem | prstcval 47674 | Lemma for prstcnidlem 47675 and prstcthin 47686. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.) |
β’ (π β πΆ = (ProsetToCatβπΎ)) & β’ (π β πΎ β Proset ) β β’ (π β πΆ = ((πΎ sSet β¨(Hom βndx), ((leβπΎ) Γ {1o})β©) sSet β¨(compβndx), β β©)) | ||
Theorem | prstcnidlem 47675 | Lemma for prstcnid 47676 and prstchomval 47684. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.) |
β’ (π β πΆ = (ProsetToCatβπΎ)) & β’ (π β πΎ β Proset ) & β’ πΈ = Slot (πΈβndx) & β’ (πΈβndx) β (compβndx) β β’ (π β (πΈβπΆ) = (πΈβ(πΎ sSet β¨(Hom βndx), ((leβπΎ) Γ {1o})β©))) | ||
Theorem | prstcnid 47676 | Components other than Hom and comp are unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) |
β’ (π β πΆ = (ProsetToCatβπΎ)) & β’ (π β πΎ β Proset ) & β’ πΈ = Slot (πΈβndx) & β’ (πΈβndx) β (compβndx) & β’ (πΈβndx) β (Hom βndx) β β’ (π β (πΈβπΎ) = (πΈβπΆ)) | ||
Theorem | prstcbas 47677 | The base set is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) |
β’ (π β πΆ = (ProsetToCatβπΎ)) & β’ (π β πΎ β Proset ) & β’ (π β π΅ = (BaseβπΎ)) β β’ (π β π΅ = (BaseβπΆ)) | ||
Theorem | prstcleval 47678 | Value of the less-than-or-equal-to relation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) (Proof shortened by AV, 12-Nov-2024.) |
β’ (π β πΆ = (ProsetToCatβπΎ)) & β’ (π β πΎ β Proset ) & β’ (π β β€ = (leβπΎ)) β β’ (π β β€ = (leβπΆ)) | ||
Theorem | prstclevalOLD 47679 | Obsolete proof of prstcleval 47678 as of 12-Nov-2024. Value of the less-than-or-equal-to relation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ (π β πΆ = (ProsetToCatβπΎ)) & β’ (π β πΎ β Proset ) & β’ (π β β€ = (leβπΎ)) β β’ (π β β€ = (leβπΆ)) | ||
Theorem | prstcle 47680 | Value of the less-than-or-equal-to relation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) |
β’ (π β πΆ = (ProsetToCatβπΎ)) & β’ (π β πΎ β Proset ) & β’ (π β β€ = (leβπΎ)) β β’ (π β (π β€ π β π(leβπΆ)π)) | ||
Theorem | prstcocval 47681 | Orthocomplementation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) (Proof shortened by AV, 12-Nov-2024.) |
β’ (π β πΆ = (ProsetToCatβπΎ)) & β’ (π β πΎ β Proset ) & β’ (π β β₯ = (ocβπΎ)) β β’ (π β β₯ = (ocβπΆ)) | ||
Theorem | prstcocvalOLD 47682 | Obsolete proof of prstcocval 47681 as of 12-Nov-2024. Orthocomplementation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ (π β πΆ = (ProsetToCatβπΎ)) & β’ (π β πΎ β Proset ) & β’ (π β β₯ = (ocβπΎ)) β β’ (π β β₯ = (ocβπΆ)) | ||
Theorem | prstcoc 47683 | Orthocomplementation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) |
β’ (π β πΆ = (ProsetToCatβπΎ)) & β’ (π β πΎ β Proset ) & β’ (π β β₯ = (ocβπΎ)) β β’ (π β ( β₯ βπ) = ((ocβπΆ)βπ)) | ||
Theorem | prstchomval 47684 | Hom-sets of the constructed category which depend on an arbitrary definition. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.) |
β’ (π β πΆ = (ProsetToCatβπΎ)) & β’ (π β πΎ β Proset ) & β’ (π β β€ = (leβπΆ)) β β’ (π β ( β€ Γ {1o}) = (Hom βπΆ)) | ||
Theorem | prstcprs 47685 | The category is a preordered set. (Contributed by Zhi Wang, 20-Sep-2024.) |
β’ (π β πΆ = (ProsetToCatβπΎ)) & β’ (π β πΎ β Proset ) β β’ (π β πΆ β Proset ) | ||
Theorem | prstcthin 47686 | The preordered set is equipped with a thin category. (Contributed by Zhi Wang, 20-Sep-2024.) |
β’ (π β πΆ = (ProsetToCatβπΎ)) & β’ (π β πΎ β Proset ) β β’ (π β πΆ β ThinCat) | ||
Theorem | prstchom 47687 |
Hom-sets of the constructed category are dependent on the preorder.
Note that prstchom.x and prstchom.y are redundant here due to our definition of ProsetToCat. However, this should not be assumed as it is definition-dependent. Therefore, the two hypotheses are added for explicitness. (Contributed by Zhi Wang, 20-Sep-2024.) |
β’ (π β πΆ = (ProsetToCatβπΎ)) & β’ (π β πΎ β Proset ) & β’ (π β β€ = (leβπΆ)) & β’ (π β π» = (Hom βπΆ)) & β’ (π β π β (BaseβπΆ)) & β’ (π β π β (BaseβπΆ)) β β’ (π β (π β€ π β (ππ»π) β β )) | ||
Theorem | prstchom2 47688* |
Hom-sets of the constructed category are dependent on the preorder.
Note that prstchom.x and prstchom.y are redundant here due to our definition of ProsetToCat ( see prstchom2ALT 47689). However, this should not be assumed as it is definition-dependent. Therefore, the two hypotheses are added for explicitness. (Contributed by Zhi Wang, 21-Sep-2024.) |
β’ (π β πΆ = (ProsetToCatβπΎ)) & β’ (π β πΎ β Proset ) & β’ (π β β€ = (leβπΆ)) & β’ (π β π» = (Hom βπΆ)) & β’ (π β π β (BaseβπΆ)) & β’ (π β π β (BaseβπΆ)) β β’ (π β (π β€ π β β!π π β (ππ»π))) | ||
Theorem | prstchom2ALT 47689* | Hom-sets of the constructed category are dependent on the preorder. This proof depends on the definition df-prstc 47673. See prstchom2 47688 for a version that does not depend on the definition. (Contributed by Zhi Wang, 20-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ (π β πΆ = (ProsetToCatβπΎ)) & β’ (π β πΎ β Proset ) & β’ (π β β€ = (leβπΆ)) & β’ (π β π» = (Hom βπΆ)) β β’ (π β (π β€ π β β!π π β (ππ»π))) | ||
Theorem | postcpos 47690 | The converted category is a poset iff the original proset is a poset. (Contributed by Zhi Wang, 26-Sep-2024.) |
β’ (π β πΆ = (ProsetToCatβπΎ)) & β’ (π β πΎ β Proset ) β β’ (π β (πΎ β Poset β πΆ β Poset)) | ||
Theorem | postcposALT 47691 | Alternate proof for postcpos 47690. (Contributed by Zhi Wang, 25-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ (π β πΆ = (ProsetToCatβπΎ)) & β’ (π β πΎ β Proset ) β β’ (π β (πΎ β Poset β πΆ β Poset)) | ||
Theorem | postc 47692* | The converted category is a poset iff no distinct objects are isomorphic. (Contributed by Zhi Wang, 25-Sep-2024.) |
β’ (π β πΆ = (ProsetToCatβπΎ)) & β’ (π β πΎ β Proset ) & β’ π΅ = (BaseβπΆ) β β’ (π β (πΆ β Poset β βπ₯ β π΅ βπ¦ β π΅ (π₯( βπ βπΆ)π¦ β π₯ = π¦))) | ||
Syntax | cmndtc 47693 | Class function defining monoids as categories. |
class MndToCat | ||
Definition | df-mndtc 47694 |
Definition of the function converting a monoid to a category. Example
3.3(4.e) of [Adamek] p. 24.
The definition of the base set is arbitrary. The whole extensible structure becomes the object here (see mndtcbasval 47696), instead of just the base set, as is the case in Example 3.3(4.e) of [Adamek] p. 24. The resulting category is defined entirely, up to isomorphism, by mndtcbas 47697, mndtchom 47700, mndtcco 47701. Use those instead. See example 3.26(3) of [Adamek] p. 33 for more on isomorphism. "MndToCat" was taken instead of "MndCat" because the latter might mean the category of monoids. (Contributed by Zhi Wang, 22-Sep-2024.) (New usage is discouraged.) |
β’ MndToCat = (π β Mnd β¦ {β¨(Baseβndx), {π}β©, β¨(Hom βndx), {β¨π, π, (Baseβπ)β©}β©, β¨(compβndx), {β¨β¨π, π, πβ©, (+gβπ)β©}β©}) | ||
Theorem | mndtcval 47695 | Value of the category built from a monoid. (Contributed by Zhi Wang, 22-Sep-2024.) (New usage is discouraged.) |
β’ (π β πΆ = (MndToCatβπ)) & β’ (π β π β Mnd) β β’ (π β πΆ = {β¨(Baseβndx), {π}β©, β¨(Hom βndx), {β¨π, π, (Baseβπ)β©}β©, β¨(compβndx), {β¨β¨π, π, πβ©, (+gβπ)β©}β©}) | ||
Theorem | mndtcbasval 47696 | The base set of the category built from a monoid. (Contributed by Zhi Wang, 22-Sep-2024.) (New usage is discouraged.) |
β’ (π β πΆ = (MndToCatβπ)) & β’ (π β π β Mnd) & β’ (π β π΅ = (BaseβπΆ)) β β’ (π β π΅ = {π}) | ||
Theorem | mndtcbas 47697* | The category built from a monoid contains precisely one object. (Contributed by Zhi Wang, 22-Sep-2024.) |
β’ (π β πΆ = (MndToCatβπ)) & β’ (π β π β Mnd) & β’ (π β π΅ = (BaseβπΆ)) β β’ (π β β!π₯ π₯ β π΅) | ||
Theorem | mndtcob 47698 | Lemma for mndtchom 47700 and mndtcco 47701. (Contributed by Zhi Wang, 22-Sep-2024.) (New usage is discouraged.) |
β’ (π β πΆ = (MndToCatβπ)) & β’ (π β π β Mnd) & β’ (π β π΅ = (BaseβπΆ)) & β’ (π β π β π΅) β β’ (π β π = π) | ||
Theorem | mndtcbas2 47699 | Two objects in a category built from a monoid are identical. (Contributed by Zhi Wang, 24-Sep-2024.) |
β’ (π β πΆ = (MndToCatβπ)) & β’ (π β π β Mnd) & β’ (π β π΅ = (BaseβπΆ)) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β π = π) | ||
Theorem | mndtchom 47700 | The only hom-set of the category built from a monoid is the base set of the monoid. (Contributed by Zhi Wang, 22-Sep-2024.) |
β’ (π β πΆ = (MndToCatβπ)) & β’ (π β π β Mnd) & β’ (π β π΅ = (BaseβπΆ)) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π» = (Hom βπΆ)) β β’ (π β (ππ»π) = (Baseβπ)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |