MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lm Structured version   Visualization version   GIF version

Definition df-lm 23053
Description: Define a function on topologies whose value is the convergence relation for sequences into the given topological space. Although 𝑓 is typically a sequence (a function from an upperset of integers) with values in the topological space, it need not be. Note, however, that the limit property concerns only values at integers, so that the real-valued function (π‘₯ ∈ ℝ ↦ (sinβ€˜(Ο€ Β· π‘₯))) converges to zero (in the standard topology on the reals) with this definition. (Contributed by NM, 7-Sep-2006.)
Assertion
Ref Expression
df-lm ⇝𝑑 = (𝑗 ∈ Top ↦ {βŸ¨π‘“, π‘₯⟩ ∣ (𝑓 ∈ (βˆͺ 𝑗 ↑pm β„‚) ∧ π‘₯ ∈ βˆͺ 𝑗 ∧ βˆ€π‘’ ∈ 𝑗 (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’))})
Distinct variable group:   𝑓,𝑗,π‘₯,𝑦,𝑒

Detailed syntax breakdown of Definition df-lm
StepHypRef Expression
1 clm 23050 . 2 class ⇝𝑑
2 vj . . 3 setvar 𝑗
3 ctop 22715 . . 3 class Top
4 vf . . . . . . 7 setvar 𝑓
54cv 1539 . . . . . 6 class 𝑓
62cv 1539 . . . . . . . 8 class 𝑗
76cuni 4908 . . . . . . 7 class βˆͺ 𝑗
8 cc 11114 . . . . . . 7 class β„‚
9 cpm 8827 . . . . . . 7 class ↑pm
107, 8, 9co 7412 . . . . . 6 class (βˆͺ 𝑗 ↑pm β„‚)
115, 10wcel 2105 . . . . 5 wff 𝑓 ∈ (βˆͺ 𝑗 ↑pm β„‚)
12 vx . . . . . . 7 setvar π‘₯
1312cv 1539 . . . . . 6 class π‘₯
1413, 7wcel 2105 . . . . 5 wff π‘₯ ∈ βˆͺ 𝑗
15 vu . . . . . . . 8 setvar 𝑒
1612, 15wel 2106 . . . . . . 7 wff π‘₯ ∈ 𝑒
17 vy . . . . . . . . . 10 setvar 𝑦
1817cv 1539 . . . . . . . . 9 class 𝑦
1915cv 1539 . . . . . . . . 9 class 𝑒
205, 18cres 5678 . . . . . . . . 9 class (𝑓 β†Ύ 𝑦)
2118, 19, 20wf 6539 . . . . . . . 8 wff (𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’
22 cuz 12829 . . . . . . . . 9 class β„€β‰₯
2322crn 5677 . . . . . . . 8 class ran β„€β‰₯
2421, 17, 23wrex 3069 . . . . . . 7 wff βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’
2516, 24wi 4 . . . . . 6 wff (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’)
2625, 15, 6wral 3060 . . . . 5 wff βˆ€π‘’ ∈ 𝑗 (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’)
2711, 14, 26w3a 1086 . . . 4 wff (𝑓 ∈ (βˆͺ 𝑗 ↑pm β„‚) ∧ π‘₯ ∈ βˆͺ 𝑗 ∧ βˆ€π‘’ ∈ 𝑗 (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’))
2827, 4, 12copab 5210 . . 3 class {βŸ¨π‘“, π‘₯⟩ ∣ (𝑓 ∈ (βˆͺ 𝑗 ↑pm β„‚) ∧ π‘₯ ∈ βˆͺ 𝑗 ∧ βˆ€π‘’ ∈ 𝑗 (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’))}
292, 3, 28cmpt 5231 . 2 class (𝑗 ∈ Top ↦ {βŸ¨π‘“, π‘₯⟩ ∣ (𝑓 ∈ (βˆͺ 𝑗 ↑pm β„‚) ∧ π‘₯ ∈ βˆͺ 𝑗 ∧ βˆ€π‘’ ∈ 𝑗 (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’))})
301, 29wceq 1540 1 wff ⇝𝑑 = (𝑗 ∈ Top ↦ {βŸ¨π‘“, π‘₯⟩ ∣ (𝑓 ∈ (βˆͺ 𝑗 ↑pm β„‚) ∧ π‘₯ ∈ βˆͺ 𝑗 ∧ βˆ€π‘’ ∈ 𝑗 (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’))})
Colors of variables: wff setvar class
This definition is referenced by:  lmrel  23054  lmrcl  23055  lmfval  23056
  Copyright terms: Public domain W3C validator