Detailed syntax breakdown of Definition df-lm
| Step | Hyp | Ref
| Expression |
| 1 | | clm 23199 |
. 2
class
⇝𝑡 |
| 2 | | vj |
. . 3
setvar 𝑗 |
| 3 | | ctop 22866 |
. . 3
class
Top |
| 4 | | vf |
. . . . . . 7
setvar 𝑓 |
| 5 | 4 | cv 1538 |
. . . . . 6
class 𝑓 |
| 6 | 2 | cv 1538 |
. . . . . . . 8
class 𝑗 |
| 7 | 6 | cuni 4889 |
. . . . . . 7
class ∪ 𝑗 |
| 8 | | cc 11136 |
. . . . . . 7
class
ℂ |
| 9 | | cpm 8850 |
. . . . . . 7
class
↑pm |
| 10 | 7, 8, 9 | co 7414 |
. . . . . 6
class (∪ 𝑗
↑pm ℂ) |
| 11 | 5, 10 | wcel 2107 |
. . . . 5
wff 𝑓 ∈ (∪ 𝑗
↑pm ℂ) |
| 12 | | vx |
. . . . . . 7
setvar 𝑥 |
| 13 | 12 | cv 1538 |
. . . . . 6
class 𝑥 |
| 14 | 13, 7 | wcel 2107 |
. . . . 5
wff 𝑥 ∈ ∪ 𝑗 |
| 15 | | vu |
. . . . . . . 8
setvar 𝑢 |
| 16 | 12, 15 | wel 2108 |
. . . . . . 7
wff 𝑥 ∈ 𝑢 |
| 17 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
| 18 | 17 | cv 1538 |
. . . . . . . . 9
class 𝑦 |
| 19 | 15 | cv 1538 |
. . . . . . . . 9
class 𝑢 |
| 20 | 5, 18 | cres 5669 |
. . . . . . . . 9
class (𝑓 ↾ 𝑦) |
| 21 | 18, 19, 20 | wf 6538 |
. . . . . . . 8
wff (𝑓 ↾ 𝑦):𝑦⟶𝑢 |
| 22 | | cuz 12861 |
. . . . . . . . 9
class
ℤ≥ |
| 23 | 22 | crn 5668 |
. . . . . . . 8
class ran
ℤ≥ |
| 24 | 21, 17, 23 | wrex 3059 |
. . . . . . 7
wff
∃𝑦 ∈ ran
ℤ≥(𝑓
↾ 𝑦):𝑦⟶𝑢 |
| 25 | 16, 24 | wi 4 |
. . . . . 6
wff (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢) |
| 26 | 25, 15, 6 | wral 3050 |
. . . . 5
wff
∀𝑢 ∈
𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢) |
| 27 | 11, 14, 26 | w3a 1086 |
. . . 4
wff (𝑓 ∈ (∪ 𝑗
↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢)) |
| 28 | 27, 4, 12 | copab 5187 |
. . 3
class
{〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝑗
↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))} |
| 29 | 2, 3, 28 | cmpt 5207 |
. 2
class (𝑗 ∈ Top ↦ {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝑗 ↑pm ℂ)
∧ 𝑥 ∈ ∪ 𝑗
∧ ∀𝑢 ∈
𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) |
| 30 | 1, 29 | wceq 1539 |
1
wff
⇝𝑡 = (𝑗 ∈ Top ↦ {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝑗 ↑pm ℂ)
∧ 𝑥 ∈ ∪ 𝑗
∧ ∀𝑢 ∈
𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) |