| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the convergence relation. (Contributed by Mario Carneiro, 7-Sep-2015.) |
| Ref | Expression |
|---|---|
| lmrcl | ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lm 23123 | . . 3 ⊢ ⇝𝑡 = (𝑗 ∈ Top ↦ {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝑗 ↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) | |
| 2 | 1 | dmmptss 6217 | . 2 ⊢ dom ⇝𝑡 ⊆ Top |
| 3 | df-br 5111 | . . 3 ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 〈𝐹, 𝑃〉 ∈ (⇝𝑡‘𝐽)) | |
| 4 | elfvdm 6898 | . . 3 ⊢ (〈𝐹, 𝑃〉 ∈ (⇝𝑡‘𝐽) → 𝐽 ∈ dom ⇝𝑡) | |
| 5 | 3, 4 | sylbi 217 | . 2 ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ dom ⇝𝑡) |
| 6 | 2, 5 | sselid 3947 | 1 ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 〈cop 4598 ∪ cuni 4874 class class class wbr 5110 {copab 5172 dom cdm 5641 ran crn 5642 ↾ cres 5643 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ↑pm cpm 8803 ℂcc 11073 ℤ≥cuz 12800 Topctop 22787 ⇝𝑡clm 23120 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fv 6522 df-lm 23123 |
| This theorem is referenced by: lmcvg 23156 |
| Copyright terms: Public domain | W3C validator |