| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the convergence relation. (Contributed by Mario Carneiro, 7-Sep-2015.) |
| Ref | Expression |
|---|---|
| lmrcl | ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lm 23145 | . . 3 ⊢ ⇝𝑡 = (𝑗 ∈ Top ↦ {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝑗 ↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) | |
| 2 | 1 | dmmptss 6193 | . 2 ⊢ dom ⇝𝑡 ⊆ Top |
| 3 | df-br 5094 | . . 3 ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 〈𝐹, 𝑃〉 ∈ (⇝𝑡‘𝐽)) | |
| 4 | elfvdm 6862 | . . 3 ⊢ (〈𝐹, 𝑃〉 ∈ (⇝𝑡‘𝐽) → 𝐽 ∈ dom ⇝𝑡) | |
| 5 | 3, 4 | sylbi 217 | . 2 ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ dom ⇝𝑡) |
| 6 | 2, 5 | sselid 3928 | 1 ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 〈cop 4581 ∪ cuni 4858 class class class wbr 5093 {copab 5155 dom cdm 5619 ran crn 5620 ↾ cres 5621 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ↑pm cpm 8757 ℂcc 11011 ℤ≥cuz 12738 Topctop 22809 ⇝𝑡clm 23142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fv 6494 df-lm 23145 |
| This theorem is referenced by: lmcvg 23178 |
| Copyright terms: Public domain | W3C validator |