MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmrcl Structured version   Visualization version   GIF version

Theorem lmrcl 23260
Description: Reverse closure for the convergence relation. (Contributed by Mario Carneiro, 7-Sep-2015.)
Assertion
Ref Expression
lmrcl (𝐹(⇝𝑡𝐽)𝑃𝐽 ∈ Top)

Proof of Theorem lmrcl
Dummy variables 𝑗 𝑓 𝑥 𝑦 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lm 23258 . . 3 𝑡 = (𝑗 ∈ Top ↦ {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ ( 𝑗pm ℂ) ∧ 𝑥 𝑗 ∧ ∀𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
21dmmptss 6272 . 2 dom ⇝𝑡 ⊆ Top
3 df-br 5167 . . 3 (𝐹(⇝𝑡𝐽)𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ (⇝𝑡𝐽))
4 elfvdm 6957 . . 3 (⟨𝐹, 𝑃⟩ ∈ (⇝𝑡𝐽) → 𝐽 ∈ dom ⇝𝑡)
53, 4sylbi 217 . 2 (𝐹(⇝𝑡𝐽)𝑃𝐽 ∈ dom ⇝𝑡)
62, 5sselid 4006 1 (𝐹(⇝𝑡𝐽)𝑃𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087  wcel 2108  wral 3067  wrex 3076  cop 4654   cuni 4931   class class class wbr 5166  {copab 5228  dom cdm 5700  ran crn 5701  cres 5702  wf 6569  cfv 6573  (class class class)co 7448  pm cpm 8885  cc 11182  cuz 12903  Topctop 22920  𝑡clm 23255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fv 6581  df-lm 23258
This theorem is referenced by:  lmcvg  23291
  Copyright terms: Public domain W3C validator