Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmrel | Structured version Visualization version GIF version |
Description: The topological space convergence relation is a relation. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 14-Nov-2013.) |
Ref | Expression |
---|---|
lmrel | ⊢ Rel (⇝𝑡‘𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lm 22288 | . 2 ⊢ ⇝𝑡 = (𝑗 ∈ Top ↦ {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝑗 ↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) | |
2 | 1 | relmptopab 7497 | 1 ⊢ Rel (⇝𝑡‘𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ∪ cuni 4836 ran crn 5581 ↾ cres 5582 Rel wrel 5585 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑pm cpm 8574 ℂcc 10800 ℤ≥cuz 12511 Topctop 21950 ⇝𝑡clm 22285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-lm 22288 |
This theorem is referenced by: lmfun 22440 cmetcaulem 24357 lmle 24370 heibor1lem 35894 rrncmslem 35917 xlimrel 43251 |
Copyright terms: Public domain | W3C validator |