![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmrel | Structured version Visualization version GIF version |
Description: The topological space convergence relation is a relation. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 14-Nov-2013.) |
Ref | Expression |
---|---|
lmrel | ⊢ Rel (⇝𝑡‘𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lm 21556 | . 2 ⊢ ⇝𝑡 = (𝑗 ∈ Top ↦ {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝑗 ↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) | |
2 | 1 | relmptopab 7211 | 1 ⊢ Rel (⇝𝑡‘𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1069 ∈ wcel 2051 ∀wral 3081 ∃wrex 3082 ∪ cuni 4708 ran crn 5404 ↾ cres 5405 Rel wrel 5408 ⟶wf 6181 ‘cfv 6185 (class class class)co 6974 ↑pm cpm 8205 ℂcc 10331 ℤ≥cuz 12056 Topctop 21220 ⇝𝑡clm 21553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ral 3086 df-rex 3087 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-br 4926 df-opab 4988 df-mpt 5005 df-id 5308 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-iota 6149 df-fun 6187 df-fv 6193 df-lm 21556 |
This theorem is referenced by: lmfun 21708 cmetcaulem 23609 lmle 23622 heibor1lem 34566 rrncmslem 34589 xlimrel 41564 |
Copyright terms: Public domain | W3C validator |