| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmrel | Structured version Visualization version GIF version | ||
| Description: The topological space convergence relation is a relation. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 14-Nov-2013.) |
| Ref | Expression |
|---|---|
| lmrel | ⊢ Rel (⇝𝑡‘𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lm 23132 | . 2 ⊢ ⇝𝑡 = (𝑗 ∈ Top ↦ {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝑗 ↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) | |
| 2 | 1 | relmptopab 7603 | 1 ⊢ Rel (⇝𝑡‘𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∪ cuni 4861 ran crn 5624 ↾ cres 5625 Rel wrel 5628 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ↑pm cpm 8761 ℂcc 11026 ℤ≥cuz 12753 Topctop 22796 ⇝𝑡clm 23129 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fv 6494 df-lm 23132 |
| This theorem is referenced by: lmfun 23284 cmetcaulem 25204 lmle 25217 heibor1lem 37788 rrncmslem 37811 xlimrel 45802 |
| Copyright terms: Public domain | W3C validator |