MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvlog Structured version   Visualization version   GIF version

Theorem dvlog 24702
Description: The derivative of the complex logarithm function. (Contributed by Mario Carneiro, 25-Feb-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
dvlog (ℂ D (log ↾ 𝐷)) = (𝑥𝐷 ↦ (1 / 𝑥))
Distinct variable group:   𝑥,𝐷

Proof of Theorem dvlog
StepHypRef Expression
1 eqid 2765 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21cnfldtopon 22879 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
32toponrestid 21019 . . . 4 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
4 cnelprrecn 10286 . . . . 5 ℂ ∈ {ℝ, ℂ}
54a1i 11 . . . 4 (⊤ → ℂ ∈ {ℝ, ℂ})
6 logcn.d . . . . . 6 𝐷 = (ℂ ∖ (-∞(,]0))
76logdmopn 24700 . . . . 5 𝐷 ∈ (TopOpen‘ℂfld)
87a1i 11 . . . 4 (⊤ → 𝐷 ∈ (TopOpen‘ℂfld))
9 logf1o 24616 . . . . . . . . 9 log:(ℂ ∖ {0})–1-1-onto→ran log
10 f1of1 6323 . . . . . . . . 9 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})–1-1→ran log)
119, 10ax-mp 5 . . . . . . . 8 log:(ℂ ∖ {0})–1-1→ran log
126logdmss 24693 . . . . . . . 8 𝐷 ⊆ (ℂ ∖ {0})
13 f1ores 6338 . . . . . . . 8 ((log:(ℂ ∖ {0})–1-1→ran log ∧ 𝐷 ⊆ (ℂ ∖ {0})) → (log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷))
1411, 12, 13mp2an 683 . . . . . . 7 (log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷)
15 f1ocnv 6336 . . . . . . 7 ((log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷) → (log ↾ 𝐷):(log “ 𝐷)–1-1-onto𝐷)
1614, 15ax-mp 5 . . . . . 6 (log ↾ 𝐷):(log “ 𝐷)–1-1-onto𝐷
17 df-log 24608 . . . . . . . . . . 11 log = (exp ↾ (ℑ “ (-π(,]π)))
1817reseq1i 5563 . . . . . . . . . 10 (log ↾ 𝐷) = ((exp ↾ (ℑ “ (-π(,]π))) ↾ 𝐷)
1918cnveqi 5467 . . . . . . . . 9 (log ↾ 𝐷) = ((exp ↾ (ℑ “ (-π(,]π))) ↾ 𝐷)
20 eff 15108 . . . . . . . . . . 11 exp:ℂ⟶ℂ
21 cnvimass 5669 . . . . . . . . . . . 12 (ℑ “ (-π(,]π)) ⊆ dom ℑ
22 imf 14152 . . . . . . . . . . . . 13 ℑ:ℂ⟶ℝ
2322fdmi 6235 . . . . . . . . . . . 12 dom ℑ = ℂ
2421, 23sseqtri 3799 . . . . . . . . . . 11 (ℑ “ (-π(,]π)) ⊆ ℂ
25 fssres 6254 . . . . . . . . . . 11 ((exp:ℂ⟶ℂ ∧ (ℑ “ (-π(,]π)) ⊆ ℂ) → (exp ↾ (ℑ “ (-π(,]π))):(ℑ “ (-π(,]π))⟶ℂ)
2620, 24, 25mp2an 683 . . . . . . . . . 10 (exp ↾ (ℑ “ (-π(,]π))):(ℑ “ (-π(,]π))⟶ℂ
27 ffun 6228 . . . . . . . . . 10 ((exp ↾ (ℑ “ (-π(,]π))):(ℑ “ (-π(,]π))⟶ℂ → Fun (exp ↾ (ℑ “ (-π(,]π))))
28 funcnvres2 6149 . . . . . . . . . 10 (Fun (exp ↾ (ℑ “ (-π(,]π))) → ((exp ↾ (ℑ “ (-π(,]π))) ↾ 𝐷) = ((exp ↾ (ℑ “ (-π(,]π))) ↾ ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷)))
2926, 27, 28mp2b 10 . . . . . . . . 9 ((exp ↾ (ℑ “ (-π(,]π))) ↾ 𝐷) = ((exp ↾ (ℑ “ (-π(,]π))) ↾ ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷))
30 cnvimass 5669 . . . . . . . . . . 11 ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷) ⊆ dom (exp ↾ (ℑ “ (-π(,]π)))
3126fdmi 6235 . . . . . . . . . . 11 dom (exp ↾ (ℑ “ (-π(,]π))) = (ℑ “ (-π(,]π))
3230, 31sseqtri 3799 . . . . . . . . . 10 ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷) ⊆ (ℑ “ (-π(,]π))
33 resabs1 5604 . . . . . . . . . 10 (((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷) ⊆ (ℑ “ (-π(,]π)) → ((exp ↾ (ℑ “ (-π(,]π))) ↾ ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷)) = (exp ↾ ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷)))
3432, 33ax-mp 5 . . . . . . . . 9 ((exp ↾ (ℑ “ (-π(,]π))) ↾ ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷)) = (exp ↾ ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷))
3519, 29, 343eqtri 2791 . . . . . . . 8 (log ↾ 𝐷) = (exp ↾ ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷))
3617imaeq1i 5647 . . . . . . . . 9 (log “ 𝐷) = ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷)
3736reseq2i 5564 . . . . . . . 8 (exp ↾ (log “ 𝐷)) = (exp ↾ ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷))
3835, 37eqtr4i 2790 . . . . . . 7 (log ↾ 𝐷) = (exp ↾ (log “ 𝐷))
39 f1oeq1 6314 . . . . . . 7 ((log ↾ 𝐷) = (exp ↾ (log “ 𝐷)) → ((log ↾ 𝐷):(log “ 𝐷)–1-1-onto𝐷 ↔ (exp ↾ (log “ 𝐷)):(log “ 𝐷)–1-1-onto𝐷))
4038, 39ax-mp 5 . . . . . 6 ((log ↾ 𝐷):(log “ 𝐷)–1-1-onto𝐷 ↔ (exp ↾ (log “ 𝐷)):(log “ 𝐷)–1-1-onto𝐷)
4116, 40mpbi 221 . . . . 5 (exp ↾ (log “ 𝐷)):(log “ 𝐷)–1-1-onto𝐷
4241a1i 11 . . . 4 (⊤ → (exp ↾ (log “ 𝐷)):(log “ 𝐷)–1-1-onto𝐷)
4338cnveqi 5467 . . . . . 6 (log ↾ 𝐷) = (exp ↾ (log “ 𝐷))
44 relres 5603 . . . . . . 7 Rel (log ↾ 𝐷)
45 dfrel2 5768 . . . . . . 7 (Rel (log ↾ 𝐷) ↔ (log ↾ 𝐷) = (log ↾ 𝐷))
4644, 45mpbi 221 . . . . . 6 (log ↾ 𝐷) = (log ↾ 𝐷)
4743, 46eqtr3i 2789 . . . . 5 (exp ↾ (log “ 𝐷)) = (log ↾ 𝐷)
48 f1of 6324 . . . . . . 7 ((log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷) → (log ↾ 𝐷):𝐷⟶(log “ 𝐷))
4914, 48mp1i 13 . . . . . 6 (⊤ → (log ↾ 𝐷):𝐷⟶(log “ 𝐷))
50 imassrn 5661 . . . . . . . 8 (log “ 𝐷) ⊆ ran log
51 logrncn 24614 . . . . . . . . 9 (𝑥 ∈ ran log → 𝑥 ∈ ℂ)
5251ssriv 3767 . . . . . . . 8 ran log ⊆ ℂ
5350, 52sstri 3772 . . . . . . 7 (log “ 𝐷) ⊆ ℂ
546logcn 24698 . . . . . . 7 (log ↾ 𝐷) ∈ (𝐷cn→ℂ)
55 cncffvrn 22994 . . . . . . 7 (((log “ 𝐷) ⊆ ℂ ∧ (log ↾ 𝐷) ∈ (𝐷cn→ℂ)) → ((log ↾ 𝐷) ∈ (𝐷cn→(log “ 𝐷)) ↔ (log ↾ 𝐷):𝐷⟶(log “ 𝐷)))
5653, 54, 55mp2an 683 . . . . . 6 ((log ↾ 𝐷) ∈ (𝐷cn→(log “ 𝐷)) ↔ (log ↾ 𝐷):𝐷⟶(log “ 𝐷))
5749, 56sylibr 225 . . . . 5 (⊤ → (log ↾ 𝐷) ∈ (𝐷cn→(log “ 𝐷)))
5847, 57syl5eqel 2848 . . . 4 (⊤ → (exp ↾ (log “ 𝐷)) ∈ (𝐷cn→(log “ 𝐷)))
59 ssid 3785 . . . . . . . . 9 ℂ ⊆ ℂ
601, 3dvres 23980 . . . . . . . . 9 (((ℂ ⊆ ℂ ∧ exp:ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ (log “ 𝐷) ⊆ ℂ)) → (ℂ D (exp ↾ (log “ 𝐷))) = ((ℂ D exp) ↾ ((int‘(TopOpen‘ℂfld))‘(log “ 𝐷))))
6159, 20, 59, 53, 60mp4an 684 . . . . . . . 8 (ℂ D (exp ↾ (log “ 𝐷))) = ((ℂ D exp) ↾ ((int‘(TopOpen‘ℂfld))‘(log “ 𝐷)))
62 dvef 24048 . . . . . . . . 9 (ℂ D exp) = exp
631cnfldtop 22880 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ Top
646dvloglem 24699 . . . . . . . . . 10 (log “ 𝐷) ∈ (TopOpen‘ℂfld)
65 isopn3i 21180 . . . . . . . . . 10 (((TopOpen‘ℂfld) ∈ Top ∧ (log “ 𝐷) ∈ (TopOpen‘ℂfld)) → ((int‘(TopOpen‘ℂfld))‘(log “ 𝐷)) = (log “ 𝐷))
6663, 64, 65mp2an 683 . . . . . . . . 9 ((int‘(TopOpen‘ℂfld))‘(log “ 𝐷)) = (log “ 𝐷)
6762, 66reseq12i 5565 . . . . . . . 8 ((ℂ D exp) ↾ ((int‘(TopOpen‘ℂfld))‘(log “ 𝐷))) = (exp ↾ (log “ 𝐷))
6861, 67eqtri 2787 . . . . . . 7 (ℂ D (exp ↾ (log “ 𝐷))) = (exp ↾ (log “ 𝐷))
6968dmeqi 5495 . . . . . 6 dom (ℂ D (exp ↾ (log “ 𝐷))) = dom (exp ↾ (log “ 𝐷))
70 dmres 5596 . . . . . 6 dom (exp ↾ (log “ 𝐷)) = ((log “ 𝐷) ∩ dom exp)
7120fdmi 6235 . . . . . . . 8 dom exp = ℂ
7253, 71sseqtr4i 3800 . . . . . . 7 (log “ 𝐷) ⊆ dom exp
73 df-ss 3748 . . . . . . 7 ((log “ 𝐷) ⊆ dom exp ↔ ((log “ 𝐷) ∩ dom exp) = (log “ 𝐷))
7472, 73mpbi 221 . . . . . 6 ((log “ 𝐷) ∩ dom exp) = (log “ 𝐷)
7569, 70, 743eqtri 2791 . . . . 5 dom (ℂ D (exp ↾ (log “ 𝐷))) = (log “ 𝐷)
7675a1i 11 . . . 4 (⊤ → dom (ℂ D (exp ↾ (log “ 𝐷))) = (log “ 𝐷))
77 neirr 2946 . . . . . 6 ¬ 0 ≠ 0
78 resss 5599 . . . . . . . . . . . . 13 ((ℂ D exp) ↾ ((int‘(TopOpen‘ℂfld))‘(log “ 𝐷))) ⊆ (ℂ D exp)
7961, 78eqsstri 3797 . . . . . . . . . . . 12 (ℂ D (exp ↾ (log “ 𝐷))) ⊆ (ℂ D exp)
8079, 62sseqtri 3799 . . . . . . . . . . 11 (ℂ D (exp ↾ (log “ 𝐷))) ⊆ exp
81 rnss 5524 . . . . . . . . . . 11 ((ℂ D (exp ↾ (log “ 𝐷))) ⊆ exp → ran (ℂ D (exp ↾ (log “ 𝐷))) ⊆ ran exp)
8280, 81ax-mp 5 . . . . . . . . . 10 ran (ℂ D (exp ↾ (log “ 𝐷))) ⊆ ran exp
83 eff2 15125 . . . . . . . . . . 11 exp:ℂ⟶(ℂ ∖ {0})
84 frn 6231 . . . . . . . . . . 11 (exp:ℂ⟶(ℂ ∖ {0}) → ran exp ⊆ (ℂ ∖ {0}))
8583, 84ax-mp 5 . . . . . . . . . 10 ran exp ⊆ (ℂ ∖ {0})
8682, 85sstri 3772 . . . . . . . . 9 ran (ℂ D (exp ↾ (log “ 𝐷))) ⊆ (ℂ ∖ {0})
8786sseli 3759 . . . . . . . 8 (0 ∈ ran (ℂ D (exp ↾ (log “ 𝐷))) → 0 ∈ (ℂ ∖ {0}))
88 eldifsn 4474 . . . . . . . 8 (0 ∈ (ℂ ∖ {0}) ↔ (0 ∈ ℂ ∧ 0 ≠ 0))
8987, 88sylib 209 . . . . . . 7 (0 ∈ ran (ℂ D (exp ↾ (log “ 𝐷))) → (0 ∈ ℂ ∧ 0 ≠ 0))
9089simprd 489 . . . . . 6 (0 ∈ ran (ℂ D (exp ↾ (log “ 𝐷))) → 0 ≠ 0)
9177, 90mto 188 . . . . 5 ¬ 0 ∈ ran (ℂ D (exp ↾ (log “ 𝐷)))
9291a1i 11 . . . 4 (⊤ → ¬ 0 ∈ ran (ℂ D (exp ↾ (log “ 𝐷))))
931, 3, 5, 8, 42, 58, 76, 92dvcnv 24045 . . 3 (⊤ → (ℂ D (exp ↾ (log “ 𝐷))) = (𝑥𝐷 ↦ (1 / ((ℂ D (exp ↾ (log “ 𝐷)))‘((exp ↾ (log “ 𝐷))‘𝑥)))))
9493mptru 1660 . 2 (ℂ D (exp ↾ (log “ 𝐷))) = (𝑥𝐷 ↦ (1 / ((ℂ D (exp ↾ (log “ 𝐷)))‘((exp ↾ (log “ 𝐷))‘𝑥))))
9547oveq2i 6857 . 2 (ℂ D (exp ↾ (log “ 𝐷))) = (ℂ D (log ↾ 𝐷))
9668fveq1i 6380 . . . . 5 ((ℂ D (exp ↾ (log “ 𝐷)))‘((exp ↾ (log “ 𝐷))‘𝑥)) = ((exp ↾ (log “ 𝐷))‘((exp ↾ (log “ 𝐷))‘𝑥))
97 f1ocnvfv2 6729 . . . . . 6 (((exp ↾ (log “ 𝐷)):(log “ 𝐷)–1-1-onto𝐷𝑥𝐷) → ((exp ↾ (log “ 𝐷))‘((exp ↾ (log “ 𝐷))‘𝑥)) = 𝑥)
9841, 97mpan 681 . . . . 5 (𝑥𝐷 → ((exp ↾ (log “ 𝐷))‘((exp ↾ (log “ 𝐷))‘𝑥)) = 𝑥)
9996, 98syl5eq 2811 . . . 4 (𝑥𝐷 → ((ℂ D (exp ↾ (log “ 𝐷)))‘((exp ↾ (log “ 𝐷))‘𝑥)) = 𝑥)
10099oveq2d 6862 . . 3 (𝑥𝐷 → (1 / ((ℂ D (exp ↾ (log “ 𝐷)))‘((exp ↾ (log “ 𝐷))‘𝑥))) = (1 / 𝑥))
101100mpteq2ia 4901 . 2 (𝑥𝐷 ↦ (1 / ((ℂ D (exp ↾ (log “ 𝐷)))‘((exp ↾ (log “ 𝐷))‘𝑥)))) = (𝑥𝐷 ↦ (1 / 𝑥))
10294, 95, 1013eqtr3i 2795 1 (ℂ D (log ↾ 𝐷)) = (𝑥𝐷 ↦ (1 / 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 197  wa 384   = wceq 1652  wtru 1653  wcel 2155  wne 2937  cdif 3731  cin 3733  wss 3734  {csn 4336  {cpr 4338  cmpt 4890  ccnv 5278  dom cdm 5279  ran crn 5280  cres 5281  cima 5282  Rel wrel 5284  Fun wfun 6064  wf 6066  1-1wf1 6067  1-1-ontowf1o 6069  cfv 6070  (class class class)co 6846  cc 10191  cr 10192  0cc0 10193  1c1 10194  -∞cmnf 10330  -cneg 10525   / cdiv 10942  (,]cioc 12383  cim 14137  expce 15088  πcpi 15093  TopOpenctopn 16362  fldccnfld 20033  Topctop 20991  intcnt 21115  cnccncf 22972   D cdv 23932  logclog 24606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-inf2 8757  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271  ax-addf 10272  ax-mulf 10273
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-iin 4681  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-of 7099  df-om 7268  df-1st 7370  df-2nd 7371  df-supp 7502  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-2o 7769  df-oadd 7772  df-er 7951  df-map 8066  df-pm 8067  df-ixp 8118  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-fsupp 8487  df-fi 8528  df-sup 8559  df-inf 8560  df-oi 8626  df-card 9020  df-cda 9247  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-div 10943  df-nn 11279  df-2 11339  df-3 11340  df-4 11341  df-5 11342  df-6 11343  df-7 11344  df-8 11345  df-9 11346  df-n0 11543  df-z 11629  df-dec 11746  df-uz 11892  df-q 11995  df-rp 12034  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12386  df-ioc 12387  df-ico 12388  df-icc 12389  df-fz 12539  df-fzo 12679  df-fl 12806  df-mod 12882  df-seq 13014  df-exp 13073  df-fac 13270  df-bc 13299  df-hash 13327  df-shft 14106  df-cj 14138  df-re 14139  df-im 14140  df-sqrt 14274  df-abs 14275  df-limsup 14501  df-clim 14518  df-rlim 14519  df-sum 14716  df-ef 15094  df-sin 15096  df-cos 15097  df-tan 15098  df-pi 15099  df-struct 16146  df-ndx 16147  df-slot 16148  df-base 16150  df-sets 16151  df-ress 16152  df-plusg 16241  df-mulr 16242  df-starv 16243  df-sca 16244  df-vsca 16245  df-ip 16246  df-tset 16247  df-ple 16248  df-ds 16250  df-unif 16251  df-hom 16252  df-cco 16253  df-rest 16363  df-topn 16364  df-0g 16382  df-gsum 16383  df-topgen 16384  df-pt 16385  df-prds 16388  df-xrs 16442  df-qtop 16447  df-imas 16448  df-xps 16450  df-mre 16526  df-mrc 16527  df-acs 16529  df-mgm 17522  df-sgrp 17564  df-mnd 17575  df-submnd 17616  df-mulg 17822  df-cntz 18027  df-cmn 18475  df-psmet 20025  df-xmet 20026  df-met 20027  df-bl 20028  df-mopn 20029  df-fbas 20030  df-fg 20031  df-cnfld 20034  df-top 20992  df-topon 21009  df-topsp 21031  df-bases 21044  df-cld 21117  df-ntr 21118  df-cls 21119  df-nei 21196  df-lp 21234  df-perf 21235  df-cn 21325  df-cnp 21326  df-haus 21413  df-cmp 21484  df-tx 21659  df-hmeo 21852  df-fil 21943  df-fm 22035  df-flim 22036  df-flf 22037  df-xms 22418  df-ms 22419  df-tms 22420  df-cncf 22974  df-limc 23935  df-dv 23936  df-log 24608
This theorem is referenced by:  dvlog2  24704  dvcncxp1  24789  dvatan  24967  lgamgulmlem2  25061  dvasin  33940
  Copyright terms: Public domain W3C validator