MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvlog Structured version   Visualization version   GIF version

Theorem dvlog 26006
Description: The derivative of the complex logarithm function. (Contributed by Mario Carneiro, 25-Feb-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
dvlog (ℂ D (log ↾ 𝐷)) = (𝑥𝐷 ↦ (1 / 𝑥))
Distinct variable group:   𝑥,𝐷

Proof of Theorem dvlog
StepHypRef Expression
1 eqid 2736 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21cnfldtopon 24146 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
32toponrestid 22270 . . . 4 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
4 cnelprrecn 11144 . . . . 5 ℂ ∈ {ℝ, ℂ}
54a1i 11 . . . 4 (⊤ → ℂ ∈ {ℝ, ℂ})
6 logcn.d . . . . . 6 𝐷 = (ℂ ∖ (-∞(,]0))
76logdmopn 26004 . . . . 5 𝐷 ∈ (TopOpen‘ℂfld)
87a1i 11 . . . 4 (⊤ → 𝐷 ∈ (TopOpen‘ℂfld))
9 logf1o 25920 . . . . . . . . 9 log:(ℂ ∖ {0})–1-1-onto→ran log
10 f1of1 6783 . . . . . . . . 9 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})–1-1→ran log)
119, 10ax-mp 5 . . . . . . . 8 log:(ℂ ∖ {0})–1-1→ran log
126logdmss 25997 . . . . . . . 8 𝐷 ⊆ (ℂ ∖ {0})
13 f1ores 6798 . . . . . . . 8 ((log:(ℂ ∖ {0})–1-1→ran log ∧ 𝐷 ⊆ (ℂ ∖ {0})) → (log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷))
1411, 12, 13mp2an 690 . . . . . . 7 (log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷)
15 f1ocnv 6796 . . . . . . 7 ((log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷) → (log ↾ 𝐷):(log “ 𝐷)–1-1-onto𝐷)
1614, 15ax-mp 5 . . . . . 6 (log ↾ 𝐷):(log “ 𝐷)–1-1-onto𝐷
17 df-log 25912 . . . . . . . . . . 11 log = (exp ↾ (ℑ “ (-π(,]π)))
1817reseq1i 5933 . . . . . . . . . 10 (log ↾ 𝐷) = ((exp ↾ (ℑ “ (-π(,]π))) ↾ 𝐷)
1918cnveqi 5830 . . . . . . . . 9 (log ↾ 𝐷) = ((exp ↾ (ℑ “ (-π(,]π))) ↾ 𝐷)
20 eff 15964 . . . . . . . . . . 11 exp:ℂ⟶ℂ
21 cnvimass 6033 . . . . . . . . . . . 12 (ℑ “ (-π(,]π)) ⊆ dom ℑ
22 imf 14998 . . . . . . . . . . . . 13 ℑ:ℂ⟶ℝ
2322fdmi 6680 . . . . . . . . . . . 12 dom ℑ = ℂ
2421, 23sseqtri 3980 . . . . . . . . . . 11 (ℑ “ (-π(,]π)) ⊆ ℂ
25 fssres 6708 . . . . . . . . . . 11 ((exp:ℂ⟶ℂ ∧ (ℑ “ (-π(,]π)) ⊆ ℂ) → (exp ↾ (ℑ “ (-π(,]π))):(ℑ “ (-π(,]π))⟶ℂ)
2620, 24, 25mp2an 690 . . . . . . . . . 10 (exp ↾ (ℑ “ (-π(,]π))):(ℑ “ (-π(,]π))⟶ℂ
27 ffun 6671 . . . . . . . . . 10 ((exp ↾ (ℑ “ (-π(,]π))):(ℑ “ (-π(,]π))⟶ℂ → Fun (exp ↾ (ℑ “ (-π(,]π))))
28 funcnvres2 6581 . . . . . . . . . 10 (Fun (exp ↾ (ℑ “ (-π(,]π))) → ((exp ↾ (ℑ “ (-π(,]π))) ↾ 𝐷) = ((exp ↾ (ℑ “ (-π(,]π))) ↾ ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷)))
2926, 27, 28mp2b 10 . . . . . . . . 9 ((exp ↾ (ℑ “ (-π(,]π))) ↾ 𝐷) = ((exp ↾ (ℑ “ (-π(,]π))) ↾ ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷))
30 cnvimass 6033 . . . . . . . . . . 11 ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷) ⊆ dom (exp ↾ (ℑ “ (-π(,]π)))
3126fdmi 6680 . . . . . . . . . . 11 dom (exp ↾ (ℑ “ (-π(,]π))) = (ℑ “ (-π(,]π))
3230, 31sseqtri 3980 . . . . . . . . . 10 ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷) ⊆ (ℑ “ (-π(,]π))
33 resabs1 5967 . . . . . . . . . 10 (((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷) ⊆ (ℑ “ (-π(,]π)) → ((exp ↾ (ℑ “ (-π(,]π))) ↾ ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷)) = (exp ↾ ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷)))
3432, 33ax-mp 5 . . . . . . . . 9 ((exp ↾ (ℑ “ (-π(,]π))) ↾ ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷)) = (exp ↾ ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷))
3519, 29, 343eqtri 2768 . . . . . . . 8 (log ↾ 𝐷) = (exp ↾ ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷))
3617imaeq1i 6010 . . . . . . . . 9 (log “ 𝐷) = ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷)
3736reseq2i 5934 . . . . . . . 8 (exp ↾ (log “ 𝐷)) = (exp ↾ ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷))
3835, 37eqtr4i 2767 . . . . . . 7 (log ↾ 𝐷) = (exp ↾ (log “ 𝐷))
39 f1oeq1 6772 . . . . . . 7 ((log ↾ 𝐷) = (exp ↾ (log “ 𝐷)) → ((log ↾ 𝐷):(log “ 𝐷)–1-1-onto𝐷 ↔ (exp ↾ (log “ 𝐷)):(log “ 𝐷)–1-1-onto𝐷))
4038, 39ax-mp 5 . . . . . 6 ((log ↾ 𝐷):(log “ 𝐷)–1-1-onto𝐷 ↔ (exp ↾ (log “ 𝐷)):(log “ 𝐷)–1-1-onto𝐷)
4116, 40mpbi 229 . . . . 5 (exp ↾ (log “ 𝐷)):(log “ 𝐷)–1-1-onto𝐷
4241a1i 11 . . . 4 (⊤ → (exp ↾ (log “ 𝐷)):(log “ 𝐷)–1-1-onto𝐷)
4338cnveqi 5830 . . . . . 6 (log ↾ 𝐷) = (exp ↾ (log “ 𝐷))
44 relres 5966 . . . . . . 7 Rel (log ↾ 𝐷)
45 dfrel2 6141 . . . . . . 7 (Rel (log ↾ 𝐷) ↔ (log ↾ 𝐷) = (log ↾ 𝐷))
4644, 45mpbi 229 . . . . . 6 (log ↾ 𝐷) = (log ↾ 𝐷)
4743, 46eqtr3i 2766 . . . . 5 (exp ↾ (log “ 𝐷)) = (log ↾ 𝐷)
48 f1of 6784 . . . . . . 7 ((log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷) → (log ↾ 𝐷):𝐷⟶(log “ 𝐷))
4914, 48mp1i 13 . . . . . 6 (⊤ → (log ↾ 𝐷):𝐷⟶(log “ 𝐷))
50 imassrn 6024 . . . . . . . 8 (log “ 𝐷) ⊆ ran log
51 logrncn 25918 . . . . . . . . 9 (𝑥 ∈ ran log → 𝑥 ∈ ℂ)
5251ssriv 3948 . . . . . . . 8 ran log ⊆ ℂ
5350, 52sstri 3953 . . . . . . 7 (log “ 𝐷) ⊆ ℂ
546logcn 26002 . . . . . . 7 (log ↾ 𝐷) ∈ (𝐷cn→ℂ)
55 cncfcdm 24261 . . . . . . 7 (((log “ 𝐷) ⊆ ℂ ∧ (log ↾ 𝐷) ∈ (𝐷cn→ℂ)) → ((log ↾ 𝐷) ∈ (𝐷cn→(log “ 𝐷)) ↔ (log ↾ 𝐷):𝐷⟶(log “ 𝐷)))
5653, 54, 55mp2an 690 . . . . . 6 ((log ↾ 𝐷) ∈ (𝐷cn→(log “ 𝐷)) ↔ (log ↾ 𝐷):𝐷⟶(log “ 𝐷))
5749, 56sylibr 233 . . . . 5 (⊤ → (log ↾ 𝐷) ∈ (𝐷cn→(log “ 𝐷)))
5847, 57eqeltrid 2842 . . . 4 (⊤ → (exp ↾ (log “ 𝐷)) ∈ (𝐷cn→(log “ 𝐷)))
59 ssid 3966 . . . . . . . . 9 ℂ ⊆ ℂ
601, 3dvres 25275 . . . . . . . . 9 (((ℂ ⊆ ℂ ∧ exp:ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ (log “ 𝐷) ⊆ ℂ)) → (ℂ D (exp ↾ (log “ 𝐷))) = ((ℂ D exp) ↾ ((int‘(TopOpen‘ℂfld))‘(log “ 𝐷))))
6159, 20, 59, 53, 60mp4an 691 . . . . . . . 8 (ℂ D (exp ↾ (log “ 𝐷))) = ((ℂ D exp) ↾ ((int‘(TopOpen‘ℂfld))‘(log “ 𝐷)))
62 dvef 25344 . . . . . . . . 9 (ℂ D exp) = exp
631cnfldtop 24147 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ Top
646dvloglem 26003 . . . . . . . . . 10 (log “ 𝐷) ∈ (TopOpen‘ℂfld)
65 isopn3i 22433 . . . . . . . . . 10 (((TopOpen‘ℂfld) ∈ Top ∧ (log “ 𝐷) ∈ (TopOpen‘ℂfld)) → ((int‘(TopOpen‘ℂfld))‘(log “ 𝐷)) = (log “ 𝐷))
6663, 64, 65mp2an 690 . . . . . . . . 9 ((int‘(TopOpen‘ℂfld))‘(log “ 𝐷)) = (log “ 𝐷)
6762, 66reseq12i 5935 . . . . . . . 8 ((ℂ D exp) ↾ ((int‘(TopOpen‘ℂfld))‘(log “ 𝐷))) = (exp ↾ (log “ 𝐷))
6861, 67eqtri 2764 . . . . . . 7 (ℂ D (exp ↾ (log “ 𝐷))) = (exp ↾ (log “ 𝐷))
6968dmeqi 5860 . . . . . 6 dom (ℂ D (exp ↾ (log “ 𝐷))) = dom (exp ↾ (log “ 𝐷))
70 dmres 5959 . . . . . 6 dom (exp ↾ (log “ 𝐷)) = ((log “ 𝐷) ∩ dom exp)
7120fdmi 6680 . . . . . . . 8 dom exp = ℂ
7253, 71sseqtrri 3981 . . . . . . 7 (log “ 𝐷) ⊆ dom exp
73 df-ss 3927 . . . . . . 7 ((log “ 𝐷) ⊆ dom exp ↔ ((log “ 𝐷) ∩ dom exp) = (log “ 𝐷))
7472, 73mpbi 229 . . . . . 6 ((log “ 𝐷) ∩ dom exp) = (log “ 𝐷)
7569, 70, 743eqtri 2768 . . . . 5 dom (ℂ D (exp ↾ (log “ 𝐷))) = (log “ 𝐷)
7675a1i 11 . . . 4 (⊤ → dom (ℂ D (exp ↾ (log “ 𝐷))) = (log “ 𝐷))
77 neirr 2952 . . . . . 6 ¬ 0 ≠ 0
78 resss 5962 . . . . . . . . . . . . 13 ((ℂ D exp) ↾ ((int‘(TopOpen‘ℂfld))‘(log “ 𝐷))) ⊆ (ℂ D exp)
7961, 78eqsstri 3978 . . . . . . . . . . . 12 (ℂ D (exp ↾ (log “ 𝐷))) ⊆ (ℂ D exp)
8079, 62sseqtri 3980 . . . . . . . . . . 11 (ℂ D (exp ↾ (log “ 𝐷))) ⊆ exp
8180rnssi 5895 . . . . . . . . . 10 ran (ℂ D (exp ↾ (log “ 𝐷))) ⊆ ran exp
82 eff2 15981 . . . . . . . . . . 11 exp:ℂ⟶(ℂ ∖ {0})
83 frn 6675 . . . . . . . . . . 11 (exp:ℂ⟶(ℂ ∖ {0}) → ran exp ⊆ (ℂ ∖ {0}))
8482, 83ax-mp 5 . . . . . . . . . 10 ran exp ⊆ (ℂ ∖ {0})
8581, 84sstri 3953 . . . . . . . . 9 ran (ℂ D (exp ↾ (log “ 𝐷))) ⊆ (ℂ ∖ {0})
8685sseli 3940 . . . . . . . 8 (0 ∈ ran (ℂ D (exp ↾ (log “ 𝐷))) → 0 ∈ (ℂ ∖ {0}))
87 eldifsn 4747 . . . . . . . 8 (0 ∈ (ℂ ∖ {0}) ↔ (0 ∈ ℂ ∧ 0 ≠ 0))
8886, 87sylib 217 . . . . . . 7 (0 ∈ ran (ℂ D (exp ↾ (log “ 𝐷))) → (0 ∈ ℂ ∧ 0 ≠ 0))
8988simprd 496 . . . . . 6 (0 ∈ ran (ℂ D (exp ↾ (log “ 𝐷))) → 0 ≠ 0)
9077, 89mto 196 . . . . 5 ¬ 0 ∈ ran (ℂ D (exp ↾ (log “ 𝐷)))
9190a1i 11 . . . 4 (⊤ → ¬ 0 ∈ ran (ℂ D (exp ↾ (log “ 𝐷))))
921, 3, 5, 8, 42, 58, 76, 91dvcnv 25341 . . 3 (⊤ → (ℂ D (exp ↾ (log “ 𝐷))) = (𝑥𝐷 ↦ (1 / ((ℂ D (exp ↾ (log “ 𝐷)))‘((exp ↾ (log “ 𝐷))‘𝑥)))))
9392mptru 1548 . 2 (ℂ D (exp ↾ (log “ 𝐷))) = (𝑥𝐷 ↦ (1 / ((ℂ D (exp ↾ (log “ 𝐷)))‘((exp ↾ (log “ 𝐷))‘𝑥))))
9447oveq2i 7368 . 2 (ℂ D (exp ↾ (log “ 𝐷))) = (ℂ D (log ↾ 𝐷))
9568fveq1i 6843 . . . . 5 ((ℂ D (exp ↾ (log “ 𝐷)))‘((exp ↾ (log “ 𝐷))‘𝑥)) = ((exp ↾ (log “ 𝐷))‘((exp ↾ (log “ 𝐷))‘𝑥))
96 f1ocnvfv2 7223 . . . . . 6 (((exp ↾ (log “ 𝐷)):(log “ 𝐷)–1-1-onto𝐷𝑥𝐷) → ((exp ↾ (log “ 𝐷))‘((exp ↾ (log “ 𝐷))‘𝑥)) = 𝑥)
9741, 96mpan 688 . . . . 5 (𝑥𝐷 → ((exp ↾ (log “ 𝐷))‘((exp ↾ (log “ 𝐷))‘𝑥)) = 𝑥)
9895, 97eqtrid 2788 . . . 4 (𝑥𝐷 → ((ℂ D (exp ↾ (log “ 𝐷)))‘((exp ↾ (log “ 𝐷))‘𝑥)) = 𝑥)
9998oveq2d 7373 . . 3 (𝑥𝐷 → (1 / ((ℂ D (exp ↾ (log “ 𝐷)))‘((exp ↾ (log “ 𝐷))‘𝑥))) = (1 / 𝑥))
10099mpteq2ia 5208 . 2 (𝑥𝐷 ↦ (1 / ((ℂ D (exp ↾ (log “ 𝐷)))‘((exp ↾ (log “ 𝐷))‘𝑥)))) = (𝑥𝐷 ↦ (1 / 𝑥))
10193, 94, 1003eqtr3i 2772 1 (ℂ D (log ↾ 𝐷)) = (𝑥𝐷 ↦ (1 / 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396   = wceq 1541  wtru 1542  wcel 2106  wne 2943  cdif 3907  cin 3909  wss 3910  {csn 4586  {cpr 4588  cmpt 5188  ccnv 5632  dom cdm 5633  ran crn 5634  cres 5635  cima 5636  Rel wrel 5638  Fun wfun 6490  wf 6492  1-1wf1 6493  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052  -∞cmnf 11187  -cneg 11386   / cdiv 11812  (,]cioc 13265  cim 14983  expce 15944  πcpi 15949  TopOpenctopn 17303  fldccnfld 20796  Topctop 22242  intcnt 22368  cnccncf 24239   D cdv 25227  logclog 25910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-tan 15954  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912
This theorem is referenced by:  dvlog2  26008  dvcncxp1  26096  dvatan  26285  lgamgulmlem2  26379  dvasin  36162
  Copyright terms: Public domain W3C validator