MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvlog Structured version   Visualization version   GIF version

Theorem dvlog 26711
Description: The derivative of the complex logarithm function. (Contributed by Mario Carneiro, 25-Feb-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
dvlog (ℂ D (log ↾ 𝐷)) = (𝑥𝐷 ↦ (1 / 𝑥))
Distinct variable group:   𝑥,𝐷

Proof of Theorem dvlog
StepHypRef Expression
1 eqid 2740 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21cnfldtopon 24824 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
32toponrestid 22948 . . . 4 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
4 cnelprrecn 11277 . . . . 5 ℂ ∈ {ℝ, ℂ}
54a1i 11 . . . 4 (⊤ → ℂ ∈ {ℝ, ℂ})
6 logcn.d . . . . . 6 𝐷 = (ℂ ∖ (-∞(,]0))
76logdmopn 26709 . . . . 5 𝐷 ∈ (TopOpen‘ℂfld)
87a1i 11 . . . 4 (⊤ → 𝐷 ∈ (TopOpen‘ℂfld))
9 logf1o 26624 . . . . . . . . 9 log:(ℂ ∖ {0})–1-1-onto→ran log
10 f1of1 6861 . . . . . . . . 9 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})–1-1→ran log)
119, 10ax-mp 5 . . . . . . . 8 log:(ℂ ∖ {0})–1-1→ran log
126logdmss 26702 . . . . . . . 8 𝐷 ⊆ (ℂ ∖ {0})
13 f1ores 6876 . . . . . . . 8 ((log:(ℂ ∖ {0})–1-1→ran log ∧ 𝐷 ⊆ (ℂ ∖ {0})) → (log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷))
1411, 12, 13mp2an 691 . . . . . . 7 (log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷)
15 f1ocnv 6874 . . . . . . 7 ((log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷) → (log ↾ 𝐷):(log “ 𝐷)–1-1-onto𝐷)
1614, 15ax-mp 5 . . . . . 6 (log ↾ 𝐷):(log “ 𝐷)–1-1-onto𝐷
17 df-log 26616 . . . . . . . . . . 11 log = (exp ↾ (ℑ “ (-π(,]π)))
1817reseq1i 6005 . . . . . . . . . 10 (log ↾ 𝐷) = ((exp ↾ (ℑ “ (-π(,]π))) ↾ 𝐷)
1918cnveqi 5899 . . . . . . . . 9 (log ↾ 𝐷) = ((exp ↾ (ℑ “ (-π(,]π))) ↾ 𝐷)
20 eff 16129 . . . . . . . . . . 11 exp:ℂ⟶ℂ
21 cnvimass 6111 . . . . . . . . . . . 12 (ℑ “ (-π(,]π)) ⊆ dom ℑ
22 imf 15162 . . . . . . . . . . . . 13 ℑ:ℂ⟶ℝ
2322fdmi 6758 . . . . . . . . . . . 12 dom ℑ = ℂ
2421, 23sseqtri 4045 . . . . . . . . . . 11 (ℑ “ (-π(,]π)) ⊆ ℂ
25 fssres 6787 . . . . . . . . . . 11 ((exp:ℂ⟶ℂ ∧ (ℑ “ (-π(,]π)) ⊆ ℂ) → (exp ↾ (ℑ “ (-π(,]π))):(ℑ “ (-π(,]π))⟶ℂ)
2620, 24, 25mp2an 691 . . . . . . . . . 10 (exp ↾ (ℑ “ (-π(,]π))):(ℑ “ (-π(,]π))⟶ℂ
27 ffun 6750 . . . . . . . . . 10 ((exp ↾ (ℑ “ (-π(,]π))):(ℑ “ (-π(,]π))⟶ℂ → Fun (exp ↾ (ℑ “ (-π(,]π))))
28 funcnvres2 6658 . . . . . . . . . 10 (Fun (exp ↾ (ℑ “ (-π(,]π))) → ((exp ↾ (ℑ “ (-π(,]π))) ↾ 𝐷) = ((exp ↾ (ℑ “ (-π(,]π))) ↾ ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷)))
2926, 27, 28mp2b 10 . . . . . . . . 9 ((exp ↾ (ℑ “ (-π(,]π))) ↾ 𝐷) = ((exp ↾ (ℑ “ (-π(,]π))) ↾ ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷))
30 cnvimass 6111 . . . . . . . . . . 11 ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷) ⊆ dom (exp ↾ (ℑ “ (-π(,]π)))
3126fdmi 6758 . . . . . . . . . . 11 dom (exp ↾ (ℑ “ (-π(,]π))) = (ℑ “ (-π(,]π))
3230, 31sseqtri 4045 . . . . . . . . . 10 ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷) ⊆ (ℑ “ (-π(,]π))
33 resabs1 6036 . . . . . . . . . 10 (((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷) ⊆ (ℑ “ (-π(,]π)) → ((exp ↾ (ℑ “ (-π(,]π))) ↾ ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷)) = (exp ↾ ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷)))
3432, 33ax-mp 5 . . . . . . . . 9 ((exp ↾ (ℑ “ (-π(,]π))) ↾ ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷)) = (exp ↾ ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷))
3519, 29, 343eqtri 2772 . . . . . . . 8 (log ↾ 𝐷) = (exp ↾ ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷))
3617imaeq1i 6086 . . . . . . . . 9 (log “ 𝐷) = ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷)
3736reseq2i 6006 . . . . . . . 8 (exp ↾ (log “ 𝐷)) = (exp ↾ ((exp ↾ (ℑ “ (-π(,]π))) “ 𝐷))
3835, 37eqtr4i 2771 . . . . . . 7 (log ↾ 𝐷) = (exp ↾ (log “ 𝐷))
39 f1oeq1 6850 . . . . . . 7 ((log ↾ 𝐷) = (exp ↾ (log “ 𝐷)) → ((log ↾ 𝐷):(log “ 𝐷)–1-1-onto𝐷 ↔ (exp ↾ (log “ 𝐷)):(log “ 𝐷)–1-1-onto𝐷))
4038, 39ax-mp 5 . . . . . 6 ((log ↾ 𝐷):(log “ 𝐷)–1-1-onto𝐷 ↔ (exp ↾ (log “ 𝐷)):(log “ 𝐷)–1-1-onto𝐷)
4116, 40mpbi 230 . . . . 5 (exp ↾ (log “ 𝐷)):(log “ 𝐷)–1-1-onto𝐷
4241a1i 11 . . . 4 (⊤ → (exp ↾ (log “ 𝐷)):(log “ 𝐷)–1-1-onto𝐷)
4338cnveqi 5899 . . . . . 6 (log ↾ 𝐷) = (exp ↾ (log “ 𝐷))
44 relres 6035 . . . . . . 7 Rel (log ↾ 𝐷)
45 dfrel2 6220 . . . . . . 7 (Rel (log ↾ 𝐷) ↔ (log ↾ 𝐷) = (log ↾ 𝐷))
4644, 45mpbi 230 . . . . . 6 (log ↾ 𝐷) = (log ↾ 𝐷)
4743, 46eqtr3i 2770 . . . . 5 (exp ↾ (log “ 𝐷)) = (log ↾ 𝐷)
48 f1of 6862 . . . . . . 7 ((log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷) → (log ↾ 𝐷):𝐷⟶(log “ 𝐷))
4914, 48mp1i 13 . . . . . 6 (⊤ → (log ↾ 𝐷):𝐷⟶(log “ 𝐷))
50 imassrn 6100 . . . . . . . 8 (log “ 𝐷) ⊆ ran log
51 logrncn 26622 . . . . . . . . 9 (𝑥 ∈ ran log → 𝑥 ∈ ℂ)
5251ssriv 4012 . . . . . . . 8 ran log ⊆ ℂ
5350, 52sstri 4018 . . . . . . 7 (log “ 𝐷) ⊆ ℂ
546logcn 26707 . . . . . . 7 (log ↾ 𝐷) ∈ (𝐷cn→ℂ)
55 cncfcdm 24943 . . . . . . 7 (((log “ 𝐷) ⊆ ℂ ∧ (log ↾ 𝐷) ∈ (𝐷cn→ℂ)) → ((log ↾ 𝐷) ∈ (𝐷cn→(log “ 𝐷)) ↔ (log ↾ 𝐷):𝐷⟶(log “ 𝐷)))
5653, 54, 55mp2an 691 . . . . . 6 ((log ↾ 𝐷) ∈ (𝐷cn→(log “ 𝐷)) ↔ (log ↾ 𝐷):𝐷⟶(log “ 𝐷))
5749, 56sylibr 234 . . . . 5 (⊤ → (log ↾ 𝐷) ∈ (𝐷cn→(log “ 𝐷)))
5847, 57eqeltrid 2848 . . . 4 (⊤ → (exp ↾ (log “ 𝐷)) ∈ (𝐷cn→(log “ 𝐷)))
59 ssid 4031 . . . . . . . . 9 ℂ ⊆ ℂ
601, 3dvres 25966 . . . . . . . . 9 (((ℂ ⊆ ℂ ∧ exp:ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ (log “ 𝐷) ⊆ ℂ)) → (ℂ D (exp ↾ (log “ 𝐷))) = ((ℂ D exp) ↾ ((int‘(TopOpen‘ℂfld))‘(log “ 𝐷))))
6159, 20, 59, 53, 60mp4an 692 . . . . . . . 8 (ℂ D (exp ↾ (log “ 𝐷))) = ((ℂ D exp) ↾ ((int‘(TopOpen‘ℂfld))‘(log “ 𝐷)))
62 dvef 26038 . . . . . . . . 9 (ℂ D exp) = exp
631cnfldtop 24825 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ Top
646dvloglem 26708 . . . . . . . . . 10 (log “ 𝐷) ∈ (TopOpen‘ℂfld)
65 isopn3i 23111 . . . . . . . . . 10 (((TopOpen‘ℂfld) ∈ Top ∧ (log “ 𝐷) ∈ (TopOpen‘ℂfld)) → ((int‘(TopOpen‘ℂfld))‘(log “ 𝐷)) = (log “ 𝐷))
6663, 64, 65mp2an 691 . . . . . . . . 9 ((int‘(TopOpen‘ℂfld))‘(log “ 𝐷)) = (log “ 𝐷)
6762, 66reseq12i 6007 . . . . . . . 8 ((ℂ D exp) ↾ ((int‘(TopOpen‘ℂfld))‘(log “ 𝐷))) = (exp ↾ (log “ 𝐷))
6861, 67eqtri 2768 . . . . . . 7 (ℂ D (exp ↾ (log “ 𝐷))) = (exp ↾ (log “ 𝐷))
6968dmeqi 5929 . . . . . 6 dom (ℂ D (exp ↾ (log “ 𝐷))) = dom (exp ↾ (log “ 𝐷))
70 dmres 6041 . . . . . 6 dom (exp ↾ (log “ 𝐷)) = ((log “ 𝐷) ∩ dom exp)
7120fdmi 6758 . . . . . . . 8 dom exp = ℂ
7253, 71sseqtrri 4046 . . . . . . 7 (log “ 𝐷) ⊆ dom exp
73 dfss2 3994 . . . . . . 7 ((log “ 𝐷) ⊆ dom exp ↔ ((log “ 𝐷) ∩ dom exp) = (log “ 𝐷))
7472, 73mpbi 230 . . . . . 6 ((log “ 𝐷) ∩ dom exp) = (log “ 𝐷)
7569, 70, 743eqtri 2772 . . . . 5 dom (ℂ D (exp ↾ (log “ 𝐷))) = (log “ 𝐷)
7675a1i 11 . . . 4 (⊤ → dom (ℂ D (exp ↾ (log “ 𝐷))) = (log “ 𝐷))
77 neirr 2955 . . . . . 6 ¬ 0 ≠ 0
78 resss 6031 . . . . . . . . . . . . 13 ((ℂ D exp) ↾ ((int‘(TopOpen‘ℂfld))‘(log “ 𝐷))) ⊆ (ℂ D exp)
7961, 78eqsstri 4043 . . . . . . . . . . . 12 (ℂ D (exp ↾ (log “ 𝐷))) ⊆ (ℂ D exp)
8079, 62sseqtri 4045 . . . . . . . . . . 11 (ℂ D (exp ↾ (log “ 𝐷))) ⊆ exp
8180rnssi 5965 . . . . . . . . . 10 ran (ℂ D (exp ↾ (log “ 𝐷))) ⊆ ran exp
82 eff2 16147 . . . . . . . . . . 11 exp:ℂ⟶(ℂ ∖ {0})
83 frn 6754 . . . . . . . . . . 11 (exp:ℂ⟶(ℂ ∖ {0}) → ran exp ⊆ (ℂ ∖ {0}))
8482, 83ax-mp 5 . . . . . . . . . 10 ran exp ⊆ (ℂ ∖ {0})
8581, 84sstri 4018 . . . . . . . . 9 ran (ℂ D (exp ↾ (log “ 𝐷))) ⊆ (ℂ ∖ {0})
8685sseli 4004 . . . . . . . 8 (0 ∈ ran (ℂ D (exp ↾ (log “ 𝐷))) → 0 ∈ (ℂ ∖ {0}))
87 eldifsn 4811 . . . . . . . 8 (0 ∈ (ℂ ∖ {0}) ↔ (0 ∈ ℂ ∧ 0 ≠ 0))
8886, 87sylib 218 . . . . . . 7 (0 ∈ ran (ℂ D (exp ↾ (log “ 𝐷))) → (0 ∈ ℂ ∧ 0 ≠ 0))
8988simprd 495 . . . . . 6 (0 ∈ ran (ℂ D (exp ↾ (log “ 𝐷))) → 0 ≠ 0)
9077, 89mto 197 . . . . 5 ¬ 0 ∈ ran (ℂ D (exp ↾ (log “ 𝐷)))
9190a1i 11 . . . 4 (⊤ → ¬ 0 ∈ ran (ℂ D (exp ↾ (log “ 𝐷))))
921, 3, 5, 8, 42, 58, 76, 91dvcnv 26035 . . 3 (⊤ → (ℂ D (exp ↾ (log “ 𝐷))) = (𝑥𝐷 ↦ (1 / ((ℂ D (exp ↾ (log “ 𝐷)))‘((exp ↾ (log “ 𝐷))‘𝑥)))))
9392mptru 1544 . 2 (ℂ D (exp ↾ (log “ 𝐷))) = (𝑥𝐷 ↦ (1 / ((ℂ D (exp ↾ (log “ 𝐷)))‘((exp ↾ (log “ 𝐷))‘𝑥))))
9447oveq2i 7459 . 2 (ℂ D (exp ↾ (log “ 𝐷))) = (ℂ D (log ↾ 𝐷))
9568fveq1i 6921 . . . . 5 ((ℂ D (exp ↾ (log “ 𝐷)))‘((exp ↾ (log “ 𝐷))‘𝑥)) = ((exp ↾ (log “ 𝐷))‘((exp ↾ (log “ 𝐷))‘𝑥))
96 f1ocnvfv2 7313 . . . . . 6 (((exp ↾ (log “ 𝐷)):(log “ 𝐷)–1-1-onto𝐷𝑥𝐷) → ((exp ↾ (log “ 𝐷))‘((exp ↾ (log “ 𝐷))‘𝑥)) = 𝑥)
9741, 96mpan 689 . . . . 5 (𝑥𝐷 → ((exp ↾ (log “ 𝐷))‘((exp ↾ (log “ 𝐷))‘𝑥)) = 𝑥)
9895, 97eqtrid 2792 . . . 4 (𝑥𝐷 → ((ℂ D (exp ↾ (log “ 𝐷)))‘((exp ↾ (log “ 𝐷))‘𝑥)) = 𝑥)
9998oveq2d 7464 . . 3 (𝑥𝐷 → (1 / ((ℂ D (exp ↾ (log “ 𝐷)))‘((exp ↾ (log “ 𝐷))‘𝑥))) = (1 / 𝑥))
10099mpteq2ia 5269 . 2 (𝑥𝐷 ↦ (1 / ((ℂ D (exp ↾ (log “ 𝐷)))‘((exp ↾ (log “ 𝐷))‘𝑥)))) = (𝑥𝐷 ↦ (1 / 𝑥))
10193, 94, 1003eqtr3i 2776 1 (ℂ D (log ↾ 𝐷)) = (𝑥𝐷 ↦ (1 / 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1537  wtru 1538  wcel 2108  wne 2946  cdif 3973  cin 3975  wss 3976  {csn 4648  {cpr 4650  cmpt 5249  ccnv 5699  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  Rel wrel 5705  Fun wfun 6567  wf 6569  1-1wf1 6570  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185  -∞cmnf 11322  -cneg 11521   / cdiv 11947  (,]cioc 13408  cim 15147  expce 16109  πcpi 16114  TopOpenctopn 17481  fldccnfld 21387  Topctop 22920  intcnt 23046  cnccncf 24921   D cdv 25918  logclog 26614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-tan 16119  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616
This theorem is referenced by:  dvlog2  26713  dvcncxp1  26803  dvatan  26996  lgamgulmlem2  27091  dvasin  37664
  Copyright terms: Public domain W3C validator