Step | Hyp | Ref
| Expression |
1 | | logf1o 25720 |
. . . . . . . 8
⊢
log:(ℂ ∖ {0})–1-1-onto→ran
log |
2 | | f1orn 6726 |
. . . . . . . . 9
⊢
(log:(ℂ ∖ {0})–1-1-onto→ran
log ↔ (log Fn (ℂ ∖ {0}) ∧ Fun ◡log)) |
3 | 2 | simprbi 497 |
. . . . . . . 8
⊢
(log:(ℂ ∖ {0})–1-1-onto→ran
log → Fun ◡log) |
4 | | funcnvres 6512 |
. . . . . . . 8
⊢ (Fun
◡log → ◡(log ↾ (ℂ ∖
(-∞(,]0))) = (◡log ↾ (log
“ (ℂ ∖ (-∞(,]0))))) |
5 | 1, 3, 4 | mp2b 10 |
. . . . . . 7
⊢ ◡(log ↾ (ℂ ∖
(-∞(,]0))) = (◡log ↾ (log
“ (ℂ ∖ (-∞(,]0)))) |
6 | | df-log 25712 |
. . . . . . . . . 10
⊢ log =
◡(exp ↾ (◡ℑ “
(-π(,]π))) |
7 | 6 | cnveqi 5783 |
. . . . . . . . 9
⊢ ◡log = ◡◡(exp ↾ (◡ℑ “
(-π(,]π))) |
8 | | relres 5920 |
. . . . . . . . . 10
⊢ Rel (exp
↾ (◡ℑ “
(-π(,]π))) |
9 | | dfrel2 6092 |
. . . . . . . . . 10
⊢ (Rel (exp
↾ (◡ℑ “
(-π(,]π))) ↔ ◡◡(exp ↾ (◡ℑ “ (-π(,]π))) = (exp
↾ (◡ℑ “
(-π(,]π)))) |
10 | 8, 9 | mpbi 229 |
. . . . . . . . 9
⊢ ◡◡(exp ↾ (◡ℑ “ (-π(,]π))) = (exp
↾ (◡ℑ “
(-π(,]π))) |
11 | 7, 10 | eqtri 2766 |
. . . . . . . 8
⊢ ◡log = (exp ↾ (◡ℑ “
(-π(,]π))) |
12 | 11 | reseq1i 5887 |
. . . . . . 7
⊢ (◡log ↾ (log “ (ℂ ∖
(-∞(,]0)))) = ((exp ↾ (◡ℑ “ (-π(,]π))) ↾
(log “ (ℂ ∖ (-∞(,]0)))) |
13 | | imassrn 5980 |
. . . . . . . . 9
⊢ (log
“ (ℂ ∖ (-∞(,]0))) ⊆ ran log |
14 | | logrn 25714 |
. . . . . . . . 9
⊢ ran log =
(◡ℑ “
(-π(,]π)) |
15 | 13, 14 | sseqtri 3957 |
. . . . . . . 8
⊢ (log
“ (ℂ ∖ (-∞(,]0))) ⊆ (◡ℑ “
(-π(,]π)) |
16 | | resabs1 5921 |
. . . . . . . 8
⊢ ((log
“ (ℂ ∖ (-∞(,]0))) ⊆ (◡ℑ “ (-π(,]π)) → ((exp
↾ (◡ℑ “
(-π(,]π))) ↾ (log “ (ℂ ∖ (-∞(,]0)))) = (exp
↾ (log “ (ℂ ∖ (-∞(,]0))))) |
17 | 15, 16 | ax-mp 5 |
. . . . . . 7
⊢ ((exp
↾ (◡ℑ “
(-π(,]π))) ↾ (log “ (ℂ ∖ (-∞(,]0)))) = (exp
↾ (log “ (ℂ ∖ (-∞(,]0)))) |
18 | 5, 12, 17 | 3eqtri 2770 |
. . . . . 6
⊢ ◡(log ↾ (ℂ ∖
(-∞(,]0))) = (exp ↾ (log “ (ℂ ∖
(-∞(,]0)))) |
19 | 18 | imaeq1i 5966 |
. . . . 5
⊢ (◡(log ↾ (ℂ ∖
(-∞(,]0))) “ (0(ball‘(abs ∘ − ))𝑅)) = ((exp ↾ (log “ (ℂ
∖ (-∞(,]0)))) “ (0(ball‘(abs ∘ − ))𝑅)) |
20 | | cnxmet 23936 |
. . . . . . . . . . . 12
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) |
21 | | 0cnd 10968 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ+
∧ 𝑅 < π) → 0
∈ ℂ) |
22 | | rpxr 12739 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ+
→ 𝑅 ∈
ℝ*) |
23 | 22 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ+
∧ 𝑅 < π) →
𝑅 ∈
ℝ*) |
24 | | blssm 23571 |
. . . . . . . . . . . 12
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ
∧ 𝑅 ∈
ℝ*) → (0(ball‘(abs ∘ − ))𝑅) ⊆
ℂ) |
25 | 20, 21, 23, 24 | mp3an2i 1465 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ+
∧ 𝑅 < π) →
(0(ball‘(abs ∘ − ))𝑅) ⊆ ℂ) |
26 | 25 | sselda 3921 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ ℝ+
∧ 𝑅 < π) ∧
𝑥 ∈ (0(ball‘(abs
∘ − ))𝑅))
→ 𝑥 ∈
ℂ) |
27 | 26 | imcld 14906 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ ℝ+
∧ 𝑅 < π) ∧
𝑥 ∈ (0(ball‘(abs
∘ − ))𝑅))
→ (ℑ‘𝑥)
∈ ℝ) |
28 | | efopnlem1 25811 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ ℝ+
∧ 𝑅 < π) ∧
𝑥 ∈ (0(ball‘(abs
∘ − ))𝑅))
→ (abs‘(ℑ‘𝑥)) < π) |
29 | | pire 25615 |
. . . . . . . . . . . . . 14
⊢ π
∈ ℝ |
30 | | abslt 15026 |
. . . . . . . . . . . . . 14
⊢
(((ℑ‘𝑥)
∈ ℝ ∧ π ∈ ℝ) →
((abs‘(ℑ‘𝑥)) < π ↔ (-π <
(ℑ‘𝑥) ∧
(ℑ‘𝑥) <
π))) |
31 | 27, 29, 30 | sylancl 586 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ ℝ+
∧ 𝑅 < π) ∧
𝑥 ∈ (0(ball‘(abs
∘ − ))𝑅))
→ ((abs‘(ℑ‘𝑥)) < π ↔ (-π <
(ℑ‘𝑥) ∧
(ℑ‘𝑥) <
π))) |
32 | 28, 31 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ ℝ+
∧ 𝑅 < π) ∧
𝑥 ∈ (0(ball‘(abs
∘ − ))𝑅))
→ (-π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) < π)) |
33 | 32 | simpld 495 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ ℝ+
∧ 𝑅 < π) ∧
𝑥 ∈ (0(ball‘(abs
∘ − ))𝑅))
→ -π < (ℑ‘𝑥)) |
34 | 32 | simprd 496 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ ℝ+
∧ 𝑅 < π) ∧
𝑥 ∈ (0(ball‘(abs
∘ − ))𝑅))
→ (ℑ‘𝑥)
< π) |
35 | 29 | renegcli 11282 |
. . . . . . . . . . . . 13
⊢ -π
∈ ℝ |
36 | 35 | rexri 11033 |
. . . . . . . . . . . 12
⊢ -π
∈ ℝ* |
37 | 29 | rexri 11033 |
. . . . . . . . . . . 12
⊢ π
∈ ℝ* |
38 | | elioo2 13120 |
. . . . . . . . . . . 12
⊢ ((-π
∈ ℝ* ∧ π ∈ ℝ*) →
((ℑ‘𝑥) ∈
(-π(,)π) ↔ ((ℑ‘𝑥) ∈ ℝ ∧ -π <
(ℑ‘𝑥) ∧
(ℑ‘𝑥) <
π))) |
39 | 36, 37, 38 | mp2an 689 |
. . . . . . . . . . 11
⊢
((ℑ‘𝑥)
∈ (-π(,)π) ↔ ((ℑ‘𝑥) ∈ ℝ ∧ -π <
(ℑ‘𝑥) ∧
(ℑ‘𝑥) <
π)) |
40 | 27, 33, 34, 39 | syl3anbrc 1342 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ ℝ+
∧ 𝑅 < π) ∧
𝑥 ∈ (0(ball‘(abs
∘ − ))𝑅))
→ (ℑ‘𝑥)
∈ (-π(,)π)) |
41 | | imf 14824 |
. . . . . . . . . . 11
⊢
ℑ:ℂ⟶ℝ |
42 | | ffn 6600 |
. . . . . . . . . . 11
⊢
(ℑ:ℂ⟶ℝ → ℑ Fn
ℂ) |
43 | | elpreima 6935 |
. . . . . . . . . . 11
⊢ (ℑ
Fn ℂ → (𝑥 ∈
(◡ℑ “ (-π(,)π))
↔ (𝑥 ∈ ℂ
∧ (ℑ‘𝑥)
∈ (-π(,)π)))) |
44 | 41, 42, 43 | mp2b 10 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (◡ℑ “ (-π(,)π)) ↔
(𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π))) |
45 | 26, 40, 44 | sylanbrc 583 |
. . . . . . . . 9
⊢ (((𝑅 ∈ ℝ+
∧ 𝑅 < π) ∧
𝑥 ∈ (0(ball‘(abs
∘ − ))𝑅))
→ 𝑥 ∈ (◡ℑ “
(-π(,)π))) |
46 | 45 | ex 413 |
. . . . . . . 8
⊢ ((𝑅 ∈ ℝ+
∧ 𝑅 < π) →
(𝑥 ∈
(0(ball‘(abs ∘ − ))𝑅) → 𝑥 ∈ (◡ℑ “
(-π(,)π)))) |
47 | 46 | ssrdv 3927 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ+
∧ 𝑅 < π) →
(0(ball‘(abs ∘ − ))𝑅) ⊆ (◡ℑ “
(-π(,)π))) |
48 | | df-ima 5602 |
. . . . . . . 8
⊢ (log
“ (ℂ ∖ (-∞(,]0))) = ran (log ↾ (ℂ ∖
(-∞(,]0))) |
49 | | eqid 2738 |
. . . . . . . . . 10
⊢ (ℂ
∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0)) |
50 | 49 | logf1o2 25805 |
. . . . . . . . 9
⊢ (log
↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖
(-∞(,]0))–1-1-onto→(◡ℑ “
(-π(,)π)) |
51 | | f1ofo 6723 |
. . . . . . . . 9
⊢ ((log
↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖
(-∞(,]0))–1-1-onto→(◡ℑ “ (-π(,)π)) → (log
↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖
(-∞(,]0))–onto→(◡ℑ “
(-π(,)π))) |
52 | | forn 6691 |
. . . . . . . . 9
⊢ ((log
↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖
(-∞(,]0))–onto→(◡ℑ “ (-π(,)π)) → ran
(log ↾ (ℂ ∖ (-∞(,]0))) = (◡ℑ “
(-π(,)π))) |
53 | 50, 51, 52 | mp2b 10 |
. . . . . . . 8
⊢ ran (log
↾ (ℂ ∖ (-∞(,]0))) = (◡ℑ “
(-π(,)π)) |
54 | 48, 53 | eqtri 2766 |
. . . . . . 7
⊢ (log
“ (ℂ ∖ (-∞(,]0))) = (◡ℑ “
(-π(,)π)) |
55 | 47, 54 | sseqtrrdi 3972 |
. . . . . 6
⊢ ((𝑅 ∈ ℝ+
∧ 𝑅 < π) →
(0(ball‘(abs ∘ − ))𝑅) ⊆ (log “ (ℂ ∖
(-∞(,]0)))) |
56 | | resima2 5926 |
. . . . . 6
⊢
((0(ball‘(abs ∘ − ))𝑅) ⊆ (log “ (ℂ ∖
(-∞(,]0))) → ((exp ↾ (log “ (ℂ ∖
(-∞(,]0)))) “ (0(ball‘(abs ∘ − ))𝑅)) = (exp “
(0(ball‘(abs ∘ − ))𝑅))) |
57 | 55, 56 | syl 17 |
. . . . 5
⊢ ((𝑅 ∈ ℝ+
∧ 𝑅 < π) →
((exp ↾ (log “ (ℂ ∖ (-∞(,]0)))) “
(0(ball‘(abs ∘ − ))𝑅)) = (exp “ (0(ball‘(abs ∘
− ))𝑅))) |
58 | 19, 57 | eqtrid 2790 |
. . . 4
⊢ ((𝑅 ∈ ℝ+
∧ 𝑅 < π) →
(◡(log ↾ (ℂ ∖
(-∞(,]0))) “ (0(ball‘(abs ∘ − ))𝑅)) = (exp “ (0(ball‘(abs ∘
− ))𝑅))) |
59 | 49 | logcn 25802 |
. . . . . 6
⊢ (log
↾ (ℂ ∖ (-∞(,]0))) ∈ ((ℂ ∖
(-∞(,]0))–cn→ℂ) |
60 | | difss 4066 |
. . . . . . 7
⊢ (ℂ
∖ (-∞(,]0)) ⊆ ℂ |
61 | | ssid 3943 |
. . . . . . 7
⊢ ℂ
⊆ ℂ |
62 | | efopn.j |
. . . . . . . 8
⊢ 𝐽 =
(TopOpen‘ℂfld) |
63 | | eqid 2738 |
. . . . . . . 8
⊢ (𝐽 ↾t (ℂ
∖ (-∞(,]0))) = (𝐽 ↾t (ℂ ∖
(-∞(,]0))) |
64 | 62 | cnfldtopon 23946 |
. . . . . . . . 9
⊢ 𝐽 ∈
(TopOn‘ℂ) |
65 | 64 | toponrestid 22070 |
. . . . . . . 8
⊢ 𝐽 = (𝐽 ↾t
ℂ) |
66 | 62, 63, 65 | cncfcn 24073 |
. . . . . . 7
⊢
(((ℂ ∖ (-∞(,]0)) ⊆ ℂ ∧ ℂ ⊆
ℂ) → ((ℂ ∖ (-∞(,]0))–cn→ℂ) = ((𝐽 ↾t (ℂ ∖
(-∞(,]0))) Cn 𝐽)) |
67 | 60, 61, 66 | mp2an 689 |
. . . . . 6
⊢ ((ℂ
∖ (-∞(,]0))–cn→ℂ) = ((𝐽 ↾t (ℂ ∖
(-∞(,]0))) Cn 𝐽) |
68 | 59, 67 | eleqtri 2837 |
. . . . 5
⊢ (log
↾ (ℂ ∖ (-∞(,]0))) ∈ ((𝐽 ↾t (ℂ ∖
(-∞(,]0))) Cn 𝐽) |
69 | 62 | cnfldtopn 23945 |
. . . . . . 7
⊢ 𝐽 = (MetOpen‘(abs ∘
− )) |
70 | 69 | blopn 23656 |
. . . . . 6
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ
∧ 𝑅 ∈
ℝ*) → (0(ball‘(abs ∘ − ))𝑅) ∈ 𝐽) |
71 | 20, 21, 23, 70 | mp3an2i 1465 |
. . . . 5
⊢ ((𝑅 ∈ ℝ+
∧ 𝑅 < π) →
(0(ball‘(abs ∘ − ))𝑅) ∈ 𝐽) |
72 | | cnima 22416 |
. . . . 5
⊢ (((log
↾ (ℂ ∖ (-∞(,]0))) ∈ ((𝐽 ↾t (ℂ ∖
(-∞(,]0))) Cn 𝐽)
∧ (0(ball‘(abs ∘ − ))𝑅) ∈ 𝐽) → (◡(log ↾ (ℂ ∖
(-∞(,]0))) “ (0(ball‘(abs ∘ − ))𝑅)) ∈ (𝐽 ↾t (ℂ ∖
(-∞(,]0)))) |
73 | 68, 71, 72 | sylancr 587 |
. . . 4
⊢ ((𝑅 ∈ ℝ+
∧ 𝑅 < π) →
(◡(log ↾ (ℂ ∖
(-∞(,]0))) “ (0(ball‘(abs ∘ − ))𝑅)) ∈ (𝐽 ↾t (ℂ ∖
(-∞(,]0)))) |
74 | 58, 73 | eqeltrrd 2840 |
. . 3
⊢ ((𝑅 ∈ ℝ+
∧ 𝑅 < π) →
(exp “ (0(ball‘(abs ∘ − ))𝑅)) ∈ (𝐽 ↾t (ℂ ∖
(-∞(,]0)))) |
75 | 62 | cnfldtop 23947 |
. . . 4
⊢ 𝐽 ∈ Top |
76 | 49 | logdmopn 25804 |
. . . . 5
⊢ (ℂ
∖ (-∞(,]0)) ∈
(TopOpen‘ℂfld) |
77 | 76, 62 | eleqtrri 2838 |
. . . 4
⊢ (ℂ
∖ (-∞(,]0)) ∈ 𝐽 |
78 | | restopn2 22328 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ (ℂ
∖ (-∞(,]0)) ∈ 𝐽) → ((exp “ (0(ball‘(abs
∘ − ))𝑅))
∈ (𝐽
↾t (ℂ ∖ (-∞(,]0))) ↔ ((exp “
(0(ball‘(abs ∘ − ))𝑅)) ∈ 𝐽 ∧ (exp “ (0(ball‘(abs
∘ − ))𝑅))
⊆ (ℂ ∖ (-∞(,]0))))) |
79 | 75, 77, 78 | mp2an 689 |
. . 3
⊢ ((exp
“ (0(ball‘(abs ∘ − ))𝑅)) ∈ (𝐽 ↾t (ℂ ∖
(-∞(,]0))) ↔ ((exp “ (0(ball‘(abs ∘ −
))𝑅)) ∈ 𝐽 ∧ (exp “
(0(ball‘(abs ∘ − ))𝑅)) ⊆ (ℂ ∖
(-∞(,]0)))) |
80 | 74, 79 | sylib 217 |
. 2
⊢ ((𝑅 ∈ ℝ+
∧ 𝑅 < π) →
((exp “ (0(ball‘(abs ∘ − ))𝑅)) ∈ 𝐽 ∧ (exp “ (0(ball‘(abs
∘ − ))𝑅))
⊆ (ℂ ∖ (-∞(,]0)))) |
81 | 80 | simpld 495 |
1
⊢ ((𝑅 ∈ ℝ+
∧ 𝑅 < π) →
(exp “ (0(ball‘(abs ∘ − ))𝑅)) ∈ 𝐽) |