![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lpval | Structured version Visualization version GIF version |
Description: The set of limit points of a subset of the base set of a topology. Alternate definition of limit point in [Munkres] p. 97. (Contributed by NM, 10-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
lpval | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((limPt‘𝐽)‘𝑆) = {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpfval.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | lpfval 23035 | . . . 4 ⊢ (𝐽 ∈ Top → (limPt‘𝐽) = (𝑦 ∈ 𝒫 𝑋 ↦ {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))})) |
3 | 2 | fveq1d 6893 | . . 3 ⊢ (𝐽 ∈ Top → ((limPt‘𝐽)‘𝑆) = ((𝑦 ∈ 𝒫 𝑋 ↦ {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))})‘𝑆)) |
4 | 3 | adantr 480 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((limPt‘𝐽)‘𝑆) = ((𝑦 ∈ 𝒫 𝑋 ↦ {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))})‘𝑆)) |
5 | eqid 2727 | . . 3 ⊢ (𝑦 ∈ 𝒫 𝑋 ↦ {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))}) = (𝑦 ∈ 𝒫 𝑋 ↦ {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))}) | |
6 | difeq1 4111 | . . . . . 6 ⊢ (𝑦 = 𝑆 → (𝑦 ∖ {𝑥}) = (𝑆 ∖ {𝑥})) | |
7 | 6 | fveq2d 6895 | . . . . 5 ⊢ (𝑦 = 𝑆 → ((cls‘𝐽)‘(𝑦 ∖ {𝑥})) = ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) |
8 | 7 | eleq2d 2814 | . . . 4 ⊢ (𝑦 = 𝑆 → (𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥})) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))) |
9 | 8 | abbidv 2796 | . . 3 ⊢ (𝑦 = 𝑆 → {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))} = {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))}) |
10 | 1 | topopn 22801 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
11 | elpw2g 5340 | . . . . 5 ⊢ (𝑋 ∈ 𝐽 → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) |
13 | 12 | biimpar 477 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑆 ∈ 𝒫 𝑋) |
14 | 10 | adantr 480 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑋 ∈ 𝐽) |
15 | ssdifss 4131 | . . . . . 6 ⊢ (𝑆 ⊆ 𝑋 → (𝑆 ∖ {𝑥}) ⊆ 𝑋) | |
16 | 1 | clsss3 22956 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑋) → ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ⊆ 𝑋) |
17 | 16 | sseld 3977 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) → 𝑥 ∈ 𝑋)) |
18 | 15, 17 | sylan2 592 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) → 𝑥 ∈ 𝑋)) |
19 | 18 | abssdv 4061 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))} ⊆ 𝑋) |
20 | 14, 19 | ssexd 5318 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))} ∈ V) |
21 | 5, 9, 13, 20 | fvmptd3 7022 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((𝑦 ∈ 𝒫 𝑋 ↦ {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))})‘𝑆) = {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))}) |
22 | 4, 21 | eqtrd 2767 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((limPt‘𝐽)‘𝑆) = {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 {cab 2704 Vcvv 3469 ∖ cdif 3941 ⊆ wss 3944 𝒫 cpw 4598 {csn 4624 ∪ cuni 4903 ↦ cmpt 5225 ‘cfv 6542 Topctop 22788 clsccl 22915 limPtclp 23031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-top 22789 df-cld 22916 df-cls 22918 df-lp 23033 |
This theorem is referenced by: islp 23037 lpsscls 23038 |
Copyright terms: Public domain | W3C validator |