MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpval Structured version   Visualization version   GIF version

Theorem lpval 22198
Description: The set of limit points of a subset of the base set of a topology. Alternate definition of limit point in [Munkres] p. 97. (Contributed by NM, 10-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
lpval ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((limPt‘𝐽)‘𝑆) = {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))})
Distinct variable groups:   𝑥,𝐽   𝑥,𝑆   𝑥,𝑋

Proof of Theorem lpval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lpfval.1 . . . . 5 𝑋 = 𝐽
21lpfval 22197 . . . 4 (𝐽 ∈ Top → (limPt‘𝐽) = (𝑦 ∈ 𝒫 𝑋 ↦ {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))}))
32fveq1d 6758 . . 3 (𝐽 ∈ Top → ((limPt‘𝐽)‘𝑆) = ((𝑦 ∈ 𝒫 𝑋 ↦ {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))})‘𝑆))
43adantr 480 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((limPt‘𝐽)‘𝑆) = ((𝑦 ∈ 𝒫 𝑋 ↦ {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))})‘𝑆))
5 eqid 2738 . . 3 (𝑦 ∈ 𝒫 𝑋 ↦ {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))}) = (𝑦 ∈ 𝒫 𝑋 ↦ {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))})
6 difeq1 4046 . . . . . 6 (𝑦 = 𝑆 → (𝑦 ∖ {𝑥}) = (𝑆 ∖ {𝑥}))
76fveq2d 6760 . . . . 5 (𝑦 = 𝑆 → ((cls‘𝐽)‘(𝑦 ∖ {𝑥})) = ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))
87eleq2d 2824 . . . 4 (𝑦 = 𝑆 → (𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥})) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
98abbidv 2808 . . 3 (𝑦 = 𝑆 → {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))} = {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))})
101topopn 21963 . . . . 5 (𝐽 ∈ Top → 𝑋𝐽)
11 elpw2g 5263 . . . . 5 (𝑋𝐽 → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1210, 11syl 17 . . . 4 (𝐽 ∈ Top → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1312biimpar 477 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ∈ 𝒫 𝑋)
1410adantr 480 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑋𝐽)
15 ssdifss 4066 . . . . . 6 (𝑆𝑋 → (𝑆 ∖ {𝑥}) ⊆ 𝑋)
161clsss3 22118 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑋) → ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ⊆ 𝑋)
1716sseld 3916 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) → 𝑥𝑋))
1815, 17sylan2 592 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) → 𝑥𝑋))
1918abssdv 3998 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))} ⊆ 𝑋)
2014, 19ssexd 5243 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))} ∈ V)
215, 9, 13, 20fvmptd3 6880 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑦 ∈ 𝒫 𝑋 ↦ {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))})‘𝑆) = {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))})
224, 21eqtrd 2778 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((limPt‘𝐽)‘𝑆) = {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {cab 2715  Vcvv 3422  cdif 3880  wss 3883  𝒫 cpw 4530  {csn 4558   cuni 4836  cmpt 5153  cfv 6418  Topctop 21950  clsccl 22077  limPtclp 22193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-top 21951  df-cld 22078  df-cls 22080  df-lp 22195
This theorem is referenced by:  islp  22199  lpsscls  22200
  Copyright terms: Public domain W3C validator