MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpval Structured version   Visualization version   GIF version

Theorem lpval 23075
Description: The set of limit points of a subset of the base set of a topology. Alternate definition of limit point in [Munkres] p. 97. (Contributed by NM, 10-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
lpval ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((limPt‘𝐽)‘𝑆) = {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))})
Distinct variable groups:   𝑥,𝐽   𝑥,𝑆   𝑥,𝑋

Proof of Theorem lpval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lpfval.1 . . . . 5 𝑋 = 𝐽
21lpfval 23074 . . . 4 (𝐽 ∈ Top → (limPt‘𝐽) = (𝑦 ∈ 𝒫 𝑋 ↦ {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))}))
32fveq1d 6877 . . 3 (𝐽 ∈ Top → ((limPt‘𝐽)‘𝑆) = ((𝑦 ∈ 𝒫 𝑋 ↦ {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))})‘𝑆))
43adantr 480 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((limPt‘𝐽)‘𝑆) = ((𝑦 ∈ 𝒫 𝑋 ↦ {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))})‘𝑆))
5 eqid 2735 . . 3 (𝑦 ∈ 𝒫 𝑋 ↦ {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))}) = (𝑦 ∈ 𝒫 𝑋 ↦ {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))})
6 difeq1 4094 . . . . . 6 (𝑦 = 𝑆 → (𝑦 ∖ {𝑥}) = (𝑆 ∖ {𝑥}))
76fveq2d 6879 . . . . 5 (𝑦 = 𝑆 → ((cls‘𝐽)‘(𝑦 ∖ {𝑥})) = ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))
87eleq2d 2820 . . . 4 (𝑦 = 𝑆 → (𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥})) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
98abbidv 2801 . . 3 (𝑦 = 𝑆 → {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))} = {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))})
101topopn 22842 . . . . 5 (𝐽 ∈ Top → 𝑋𝐽)
11 elpw2g 5303 . . . . 5 (𝑋𝐽 → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1210, 11syl 17 . . . 4 (𝐽 ∈ Top → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1312biimpar 477 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ∈ 𝒫 𝑋)
1410adantr 480 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑋𝐽)
15 ssdifss 4115 . . . . . 6 (𝑆𝑋 → (𝑆 ∖ {𝑥}) ⊆ 𝑋)
161clsss3 22995 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑋) → ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ⊆ 𝑋)
1716sseld 3957 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) → 𝑥𝑋))
1815, 17sylan2 593 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) → 𝑥𝑋))
1918abssdv 4043 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))} ⊆ 𝑋)
2014, 19ssexd 5294 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))} ∈ V)
215, 9, 13, 20fvmptd3 7008 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑦 ∈ 𝒫 𝑋 ↦ {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))})‘𝑆) = {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))})
224, 21eqtrd 2770 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((limPt‘𝐽)‘𝑆) = {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {cab 2713  Vcvv 3459  cdif 3923  wss 3926  𝒫 cpw 4575  {csn 4601   cuni 4883  cmpt 5201  cfv 6530  Topctop 22829  clsccl 22954  limPtclp 23070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-top 22830  df-cld 22955  df-cls 22957  df-lp 23072
This theorem is referenced by:  islp  23076  lpsscls  23077
  Copyright terms: Public domain W3C validator