Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lpval | Structured version Visualization version GIF version |
Description: The set of limit points of a subset of the base set of a topology. Alternate definition of limit point in [Munkres] p. 97. (Contributed by NM, 10-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
lpval | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((limPt‘𝐽)‘𝑆) = {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpfval.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | lpfval 22197 | . . . 4 ⊢ (𝐽 ∈ Top → (limPt‘𝐽) = (𝑦 ∈ 𝒫 𝑋 ↦ {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))})) |
3 | 2 | fveq1d 6758 | . . 3 ⊢ (𝐽 ∈ Top → ((limPt‘𝐽)‘𝑆) = ((𝑦 ∈ 𝒫 𝑋 ↦ {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))})‘𝑆)) |
4 | 3 | adantr 480 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((limPt‘𝐽)‘𝑆) = ((𝑦 ∈ 𝒫 𝑋 ↦ {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))})‘𝑆)) |
5 | eqid 2738 | . . 3 ⊢ (𝑦 ∈ 𝒫 𝑋 ↦ {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))}) = (𝑦 ∈ 𝒫 𝑋 ↦ {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))}) | |
6 | difeq1 4046 | . . . . . 6 ⊢ (𝑦 = 𝑆 → (𝑦 ∖ {𝑥}) = (𝑆 ∖ {𝑥})) | |
7 | 6 | fveq2d 6760 | . . . . 5 ⊢ (𝑦 = 𝑆 → ((cls‘𝐽)‘(𝑦 ∖ {𝑥})) = ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) |
8 | 7 | eleq2d 2824 | . . . 4 ⊢ (𝑦 = 𝑆 → (𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥})) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))) |
9 | 8 | abbidv 2808 | . . 3 ⊢ (𝑦 = 𝑆 → {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))} = {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))}) |
10 | 1 | topopn 21963 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
11 | elpw2g 5263 | . . . . 5 ⊢ (𝑋 ∈ 𝐽 → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) |
13 | 12 | biimpar 477 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑆 ∈ 𝒫 𝑋) |
14 | 10 | adantr 480 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑋 ∈ 𝐽) |
15 | ssdifss 4066 | . . . . . 6 ⊢ (𝑆 ⊆ 𝑋 → (𝑆 ∖ {𝑥}) ⊆ 𝑋) | |
16 | 1 | clsss3 22118 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑋) → ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ⊆ 𝑋) |
17 | 16 | sseld 3916 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) → 𝑥 ∈ 𝑋)) |
18 | 15, 17 | sylan2 592 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) → 𝑥 ∈ 𝑋)) |
19 | 18 | abssdv 3998 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))} ⊆ 𝑋) |
20 | 14, 19 | ssexd 5243 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))} ∈ V) |
21 | 5, 9, 13, 20 | fvmptd3 6880 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((𝑦 ∈ 𝒫 𝑋 ↦ {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))})‘𝑆) = {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))}) |
22 | 4, 21 | eqtrd 2778 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((limPt‘𝐽)‘𝑆) = {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 Vcvv 3422 ∖ cdif 3880 ⊆ wss 3883 𝒫 cpw 4530 {csn 4558 ∪ cuni 4836 ↦ cmpt 5153 ‘cfv 6418 Topctop 21950 clsccl 22077 limPtclp 22193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-top 21951 df-cld 22078 df-cls 22080 df-lp 22195 |
This theorem is referenced by: islp 22199 lpsscls 22200 |
Copyright terms: Public domain | W3C validator |