MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpval Structured version   Visualization version   GIF version

Theorem lpval 22863
Description: The set of limit points of a subset of the base set of a topology. Alternate definition of limit point in [Munkres] p. 97. (Contributed by NM, 10-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
lpval ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ ((limPtβ€˜π½)β€˜π‘†) = {π‘₯ ∣ π‘₯ ∈ ((clsβ€˜π½)β€˜(𝑆 βˆ– {π‘₯}))})
Distinct variable groups:   π‘₯,𝐽   π‘₯,𝑆   π‘₯,𝑋

Proof of Theorem lpval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lpfval.1 . . . . 5 𝑋 = βˆͺ 𝐽
21lpfval 22862 . . . 4 (𝐽 ∈ Top β†’ (limPtβ€˜π½) = (𝑦 ∈ 𝒫 𝑋 ↦ {π‘₯ ∣ π‘₯ ∈ ((clsβ€˜π½)β€˜(𝑦 βˆ– {π‘₯}))}))
32fveq1d 6893 . . 3 (𝐽 ∈ Top β†’ ((limPtβ€˜π½)β€˜π‘†) = ((𝑦 ∈ 𝒫 𝑋 ↦ {π‘₯ ∣ π‘₯ ∈ ((clsβ€˜π½)β€˜(𝑦 βˆ– {π‘₯}))})β€˜π‘†))
43adantr 481 . 2 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ ((limPtβ€˜π½)β€˜π‘†) = ((𝑦 ∈ 𝒫 𝑋 ↦ {π‘₯ ∣ π‘₯ ∈ ((clsβ€˜π½)β€˜(𝑦 βˆ– {π‘₯}))})β€˜π‘†))
5 eqid 2732 . . 3 (𝑦 ∈ 𝒫 𝑋 ↦ {π‘₯ ∣ π‘₯ ∈ ((clsβ€˜π½)β€˜(𝑦 βˆ– {π‘₯}))}) = (𝑦 ∈ 𝒫 𝑋 ↦ {π‘₯ ∣ π‘₯ ∈ ((clsβ€˜π½)β€˜(𝑦 βˆ– {π‘₯}))})
6 difeq1 4115 . . . . . 6 (𝑦 = 𝑆 β†’ (𝑦 βˆ– {π‘₯}) = (𝑆 βˆ– {π‘₯}))
76fveq2d 6895 . . . . 5 (𝑦 = 𝑆 β†’ ((clsβ€˜π½)β€˜(𝑦 βˆ– {π‘₯})) = ((clsβ€˜π½)β€˜(𝑆 βˆ– {π‘₯})))
87eleq2d 2819 . . . 4 (𝑦 = 𝑆 β†’ (π‘₯ ∈ ((clsβ€˜π½)β€˜(𝑦 βˆ– {π‘₯})) ↔ π‘₯ ∈ ((clsβ€˜π½)β€˜(𝑆 βˆ– {π‘₯}))))
98abbidv 2801 . . 3 (𝑦 = 𝑆 β†’ {π‘₯ ∣ π‘₯ ∈ ((clsβ€˜π½)β€˜(𝑦 βˆ– {π‘₯}))} = {π‘₯ ∣ π‘₯ ∈ ((clsβ€˜π½)β€˜(𝑆 βˆ– {π‘₯}))})
101topopn 22628 . . . . 5 (𝐽 ∈ Top β†’ 𝑋 ∈ 𝐽)
11 elpw2g 5344 . . . . 5 (𝑋 ∈ 𝐽 β†’ (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 βŠ† 𝑋))
1210, 11syl 17 . . . 4 (𝐽 ∈ Top β†’ (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 βŠ† 𝑋))
1312biimpar 478 . . 3 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ 𝑆 ∈ 𝒫 𝑋)
1410adantr 481 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ 𝑋 ∈ 𝐽)
15 ssdifss 4135 . . . . . 6 (𝑆 βŠ† 𝑋 β†’ (𝑆 βˆ– {π‘₯}) βŠ† 𝑋)
161clsss3 22783 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑆 βˆ– {π‘₯}) βŠ† 𝑋) β†’ ((clsβ€˜π½)β€˜(𝑆 βˆ– {π‘₯})) βŠ† 𝑋)
1716sseld 3981 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑆 βˆ– {π‘₯}) βŠ† 𝑋) β†’ (π‘₯ ∈ ((clsβ€˜π½)β€˜(𝑆 βˆ– {π‘₯})) β†’ π‘₯ ∈ 𝑋))
1815, 17sylan2 593 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ (π‘₯ ∈ ((clsβ€˜π½)β€˜(𝑆 βˆ– {π‘₯})) β†’ π‘₯ ∈ 𝑋))
1918abssdv 4065 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ {π‘₯ ∣ π‘₯ ∈ ((clsβ€˜π½)β€˜(𝑆 βˆ– {π‘₯}))} βŠ† 𝑋)
2014, 19ssexd 5324 . . 3 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ {π‘₯ ∣ π‘₯ ∈ ((clsβ€˜π½)β€˜(𝑆 βˆ– {π‘₯}))} ∈ V)
215, 9, 13, 20fvmptd3 7021 . 2 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ ((𝑦 ∈ 𝒫 𝑋 ↦ {π‘₯ ∣ π‘₯ ∈ ((clsβ€˜π½)β€˜(𝑦 βˆ– {π‘₯}))})β€˜π‘†) = {π‘₯ ∣ π‘₯ ∈ ((clsβ€˜π½)β€˜(𝑆 βˆ– {π‘₯}))})
224, 21eqtrd 2772 1 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ ((limPtβ€˜π½)β€˜π‘†) = {π‘₯ ∣ π‘₯ ∈ ((clsβ€˜π½)β€˜(𝑆 βˆ– {π‘₯}))})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {cab 2709  Vcvv 3474   βˆ– cdif 3945   βŠ† wss 3948  π’« cpw 4602  {csn 4628  βˆͺ cuni 4908   ↦ cmpt 5231  β€˜cfv 6543  Topctop 22615  clsccl 22742  limPtclp 22858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-top 22616  df-cld 22743  df-cls 22745  df-lp 22860
This theorem is referenced by:  islp  22864  lpsscls  22865
  Copyright terms: Public domain W3C validator