MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpval Structured version   Visualization version   GIF version

Theorem lpval 22290
Description: The set of limit points of a subset of the base set of a topology. Alternate definition of limit point in [Munkres] p. 97. (Contributed by NM, 10-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
lpval ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((limPt‘𝐽)‘𝑆) = {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))})
Distinct variable groups:   𝑥,𝐽   𝑥,𝑆   𝑥,𝑋

Proof of Theorem lpval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lpfval.1 . . . . 5 𝑋 = 𝐽
21lpfval 22289 . . . 4 (𝐽 ∈ Top → (limPt‘𝐽) = (𝑦 ∈ 𝒫 𝑋 ↦ {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))}))
32fveq1d 6776 . . 3 (𝐽 ∈ Top → ((limPt‘𝐽)‘𝑆) = ((𝑦 ∈ 𝒫 𝑋 ↦ {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))})‘𝑆))
43adantr 481 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((limPt‘𝐽)‘𝑆) = ((𝑦 ∈ 𝒫 𝑋 ↦ {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))})‘𝑆))
5 eqid 2738 . . 3 (𝑦 ∈ 𝒫 𝑋 ↦ {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))}) = (𝑦 ∈ 𝒫 𝑋 ↦ {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))})
6 difeq1 4050 . . . . . 6 (𝑦 = 𝑆 → (𝑦 ∖ {𝑥}) = (𝑆 ∖ {𝑥}))
76fveq2d 6778 . . . . 5 (𝑦 = 𝑆 → ((cls‘𝐽)‘(𝑦 ∖ {𝑥})) = ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))
87eleq2d 2824 . . . 4 (𝑦 = 𝑆 → (𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥})) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
98abbidv 2807 . . 3 (𝑦 = 𝑆 → {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))} = {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))})
101topopn 22055 . . . . 5 (𝐽 ∈ Top → 𝑋𝐽)
11 elpw2g 5268 . . . . 5 (𝑋𝐽 → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1210, 11syl 17 . . . 4 (𝐽 ∈ Top → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1312biimpar 478 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ∈ 𝒫 𝑋)
1410adantr 481 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑋𝐽)
15 ssdifss 4070 . . . . . 6 (𝑆𝑋 → (𝑆 ∖ {𝑥}) ⊆ 𝑋)
161clsss3 22210 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑋) → ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ⊆ 𝑋)
1716sseld 3920 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) → 𝑥𝑋))
1815, 17sylan2 593 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) → 𝑥𝑋))
1918abssdv 4002 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))} ⊆ 𝑋)
2014, 19ssexd 5248 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))} ∈ V)
215, 9, 13, 20fvmptd3 6898 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑦 ∈ 𝒫 𝑋 ↦ {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))})‘𝑆) = {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))})
224, 21eqtrd 2778 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((limPt‘𝐽)‘𝑆) = {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {cab 2715  Vcvv 3432  cdif 3884  wss 3887  𝒫 cpw 4533  {csn 4561   cuni 4839  cmpt 5157  cfv 6433  Topctop 22042  clsccl 22169  limPtclp 22285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-top 22043  df-cld 22170  df-cls 22172  df-lp 22287
This theorem is referenced by:  islp  22291  lpsscls  22292
  Copyright terms: Public domain W3C validator