![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lpval | Structured version Visualization version GIF version |
Description: The set of limit points of a subset of the base set of a topology. Alternate definition of limit point in [Munkres] p. 97. (Contributed by NM, 10-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
lpval | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((limPt‘𝐽)‘𝑆) = {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpfval.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | lpfval 21271 | . . . 4 ⊢ (𝐽 ∈ Top → (limPt‘𝐽) = (𝑦 ∈ 𝒫 𝑋 ↦ {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))})) |
3 | 2 | fveq1d 6413 | . . 3 ⊢ (𝐽 ∈ Top → ((limPt‘𝐽)‘𝑆) = ((𝑦 ∈ 𝒫 𝑋 ↦ {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))})‘𝑆)) |
4 | 3 | adantr 473 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((limPt‘𝐽)‘𝑆) = ((𝑦 ∈ 𝒫 𝑋 ↦ {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))})‘𝑆)) |
5 | 1 | topopn 21039 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
6 | elpw2g 5019 | . . . . 5 ⊢ (𝑋 ∈ 𝐽 → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) |
8 | 7 | biimpar 470 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑆 ∈ 𝒫 𝑋) |
9 | 5 | adantr 473 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑋 ∈ 𝐽) |
10 | ssdifss 3939 | . . . . . 6 ⊢ (𝑆 ⊆ 𝑋 → (𝑆 ∖ {𝑥}) ⊆ 𝑋) | |
11 | 1 | clsss3 21192 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑋) → ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ⊆ 𝑋) |
12 | 11 | sseld 3797 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) → 𝑥 ∈ 𝑋)) |
13 | 10, 12 | sylan2 587 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) → 𝑥 ∈ 𝑋)) |
14 | 13 | abssdv 3872 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))} ⊆ 𝑋) |
15 | 9, 14 | ssexd 5000 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))} ∈ V) |
16 | difeq1 3919 | . . . . . . 7 ⊢ (𝑦 = 𝑆 → (𝑦 ∖ {𝑥}) = (𝑆 ∖ {𝑥})) | |
17 | 16 | fveq2d 6415 | . . . . . 6 ⊢ (𝑦 = 𝑆 → ((cls‘𝐽)‘(𝑦 ∖ {𝑥})) = ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) |
18 | 17 | eleq2d 2864 | . . . . 5 ⊢ (𝑦 = 𝑆 → (𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥})) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))) |
19 | 18 | abbidv 2918 | . . . 4 ⊢ (𝑦 = 𝑆 → {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))} = {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))}) |
20 | eqid 2799 | . . . 4 ⊢ (𝑦 ∈ 𝒫 𝑋 ↦ {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))}) = (𝑦 ∈ 𝒫 𝑋 ↦ {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))}) | |
21 | 19, 20 | fvmptg 6505 | . . 3 ⊢ ((𝑆 ∈ 𝒫 𝑋 ∧ {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))} ∈ V) → ((𝑦 ∈ 𝒫 𝑋 ↦ {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))})‘𝑆) = {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))}) |
22 | 8, 15, 21 | syl2anc 580 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((𝑦 ∈ 𝒫 𝑋 ↦ {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))})‘𝑆) = {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))}) |
23 | 4, 22 | eqtrd 2833 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((limPt‘𝐽)‘𝑆) = {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 {cab 2785 Vcvv 3385 ∖ cdif 3766 ⊆ wss 3769 𝒫 cpw 4349 {csn 4368 ∪ cuni 4628 ↦ cmpt 4922 ‘cfv 6101 Topctop 21026 clsccl 21151 limPtclp 21267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-iin 4713 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-top 21027 df-cld 21152 df-cls 21154 df-lp 21269 |
This theorem is referenced by: islp 21273 lpsscls 21274 |
Copyright terms: Public domain | W3C validator |