| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lpval | Structured version Visualization version GIF version | ||
| Description: The set of limit points of a subset of the base set of a topology. Alternate definition of limit point in [Munkres] p. 97. (Contributed by NM, 10-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| Ref | Expression |
|---|---|
| lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| lpval | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((limPt‘𝐽)‘𝑆) = {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpfval.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | lpfval 23051 | . . . 4 ⊢ (𝐽 ∈ Top → (limPt‘𝐽) = (𝑦 ∈ 𝒫 𝑋 ↦ {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))})) |
| 3 | 2 | fveq1d 6824 | . . 3 ⊢ (𝐽 ∈ Top → ((limPt‘𝐽)‘𝑆) = ((𝑦 ∈ 𝒫 𝑋 ↦ {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))})‘𝑆)) |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((limPt‘𝐽)‘𝑆) = ((𝑦 ∈ 𝒫 𝑋 ↦ {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))})‘𝑆)) |
| 5 | eqid 2731 | . . 3 ⊢ (𝑦 ∈ 𝒫 𝑋 ↦ {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))}) = (𝑦 ∈ 𝒫 𝑋 ↦ {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))}) | |
| 6 | difeq1 4069 | . . . . . 6 ⊢ (𝑦 = 𝑆 → (𝑦 ∖ {𝑥}) = (𝑆 ∖ {𝑥})) | |
| 7 | 6 | fveq2d 6826 | . . . . 5 ⊢ (𝑦 = 𝑆 → ((cls‘𝐽)‘(𝑦 ∖ {𝑥})) = ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) |
| 8 | 7 | eleq2d 2817 | . . . 4 ⊢ (𝑦 = 𝑆 → (𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥})) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))) |
| 9 | 8 | abbidv 2797 | . . 3 ⊢ (𝑦 = 𝑆 → {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))} = {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))}) |
| 10 | 1 | topopn 22819 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| 11 | elpw2g 5271 | . . . . 5 ⊢ (𝑋 ∈ 𝐽 → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) | |
| 12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) |
| 13 | 12 | biimpar 477 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑆 ∈ 𝒫 𝑋) |
| 14 | 10 | adantr 480 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑋 ∈ 𝐽) |
| 15 | ssdifss 4090 | . . . . . 6 ⊢ (𝑆 ⊆ 𝑋 → (𝑆 ∖ {𝑥}) ⊆ 𝑋) | |
| 16 | 1 | clsss3 22972 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑋) → ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ⊆ 𝑋) |
| 17 | 16 | sseld 3933 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) → 𝑥 ∈ 𝑋)) |
| 18 | 15, 17 | sylan2 593 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) → 𝑥 ∈ 𝑋)) |
| 19 | 18 | abssdv 4019 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))} ⊆ 𝑋) |
| 20 | 14, 19 | ssexd 5262 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))} ∈ V) |
| 21 | 5, 9, 13, 20 | fvmptd3 6952 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((𝑦 ∈ 𝒫 𝑋 ↦ {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑦 ∖ {𝑥}))})‘𝑆) = {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))}) |
| 22 | 4, 21 | eqtrd 2766 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((limPt‘𝐽)‘𝑆) = {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 Vcvv 3436 ∖ cdif 3899 ⊆ wss 3902 𝒫 cpw 4550 {csn 4576 ∪ cuni 4859 ↦ cmpt 5172 ‘cfv 6481 Topctop 22806 clsccl 22931 limPtclp 23047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-top 22807 df-cld 22932 df-cls 22934 df-lp 23049 |
| This theorem is referenced by: islp 23053 lpsscls 23054 |
| Copyright terms: Public domain | W3C validator |