Detailed syntax breakdown of Definition df-lring
| Step | Hyp | Ref
| Expression |
| 1 | | clring 20538 |
. 2
class
LRing |
| 2 | | vx |
. . . . . . . . 9
setvar 𝑥 |
| 3 | 2 | cv 1539 |
. . . . . . . 8
class 𝑥 |
| 4 | | vy |
. . . . . . . . 9
setvar 𝑦 |
| 5 | 4 | cv 1539 |
. . . . . . . 8
class 𝑦 |
| 6 | | vr |
. . . . . . . . . 10
setvar 𝑟 |
| 7 | 6 | cv 1539 |
. . . . . . . . 9
class 𝑟 |
| 8 | | cplusg 17297 |
. . . . . . . . 9
class
+g |
| 9 | 7, 8 | cfv 6561 |
. . . . . . . 8
class
(+g‘𝑟) |
| 10 | 3, 5, 9 | co 7431 |
. . . . . . 7
class (𝑥(+g‘𝑟)𝑦) |
| 11 | | cur 20178 |
. . . . . . . 8
class
1r |
| 12 | 7, 11 | cfv 6561 |
. . . . . . 7
class
(1r‘𝑟) |
| 13 | 10, 12 | wceq 1540 |
. . . . . 6
wff (𝑥(+g‘𝑟)𝑦) = (1r‘𝑟) |
| 14 | | cui 20355 |
. . . . . . . . 9
class
Unit |
| 15 | 7, 14 | cfv 6561 |
. . . . . . . 8
class
(Unit‘𝑟) |
| 16 | 3, 15 | wcel 2108 |
. . . . . . 7
wff 𝑥 ∈ (Unit‘𝑟) |
| 17 | 5, 15 | wcel 2108 |
. . . . . . 7
wff 𝑦 ∈ (Unit‘𝑟) |
| 18 | 16, 17 | wo 848 |
. . . . . 6
wff (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)) |
| 19 | 13, 18 | wi 4 |
. . . . 5
wff ((𝑥(+g‘𝑟)𝑦) = (1r‘𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟))) |
| 20 | | cbs 17247 |
. . . . . 6
class
Base |
| 21 | 7, 20 | cfv 6561 |
. . . . 5
class
(Base‘𝑟) |
| 22 | 19, 4, 21 | wral 3061 |
. . . 4
wff
∀𝑦 ∈
(Base‘𝑟)((𝑥(+g‘𝑟)𝑦) = (1r‘𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟))) |
| 23 | 22, 2, 21 | wral 3061 |
. . 3
wff
∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g‘𝑟)𝑦) = (1r‘𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟))) |
| 24 | | cnzr 20512 |
. . 3
class
NzRing |
| 25 | 23, 6, 24 | crab 3436 |
. 2
class {𝑟 ∈ NzRing ∣
∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g‘𝑟)𝑦) = (1r‘𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))} |
| 26 | 1, 25 | wceq 1540 |
1
wff LRing =
{𝑟 ∈ NzRing ∣
∀𝑥 ∈
(Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g‘𝑟)𝑦) = (1r‘𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))} |