MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lring Structured version   Visualization version   GIF version

Definition df-lring 20559
Description: A local ring is a nonzero ring where for any two elements summing to one, at least one is invertible. Any field is a local ring; the ring of integers is an example of a ring which is not a local ring. (Contributed by Jim Kingdon, 18-Feb-2025.) (Revised by SN, 23-Feb-2025.)
Assertion
Ref Expression
df-lring LRing = {𝑟 ∈ NzRing ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g𝑟)𝑦) = (1r𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))}
Distinct variable group:   𝑥,𝑦,𝑟

Detailed syntax breakdown of Definition df-lring
StepHypRef Expression
1 clring 20558 . 2 class LRing
2 vx . . . . . . . . 9 setvar 𝑥
32cv 1536 . . . . . . . 8 class 𝑥
4 vy . . . . . . . . 9 setvar 𝑦
54cv 1536 . . . . . . . 8 class 𝑦
6 vr . . . . . . . . . 10 setvar 𝑟
76cv 1536 . . . . . . . . 9 class 𝑟
8 cplusg 17305 . . . . . . . . 9 class +g
97, 8cfv 6568 . . . . . . . 8 class (+g𝑟)
103, 5, 9co 7443 . . . . . . 7 class (𝑥(+g𝑟)𝑦)
11 cur 20202 . . . . . . . 8 class 1r
127, 11cfv 6568 . . . . . . 7 class (1r𝑟)
1310, 12wceq 1537 . . . . . 6 wff (𝑥(+g𝑟)𝑦) = (1r𝑟)
14 cui 20375 . . . . . . . . 9 class Unit
157, 14cfv 6568 . . . . . . . 8 class (Unit‘𝑟)
163, 15wcel 2108 . . . . . . 7 wff 𝑥 ∈ (Unit‘𝑟)
175, 15wcel 2108 . . . . . . 7 wff 𝑦 ∈ (Unit‘𝑟)
1816, 17wo 846 . . . . . 6 wff (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟))
1913, 18wi 4 . . . . 5 wff ((𝑥(+g𝑟)𝑦) = (1r𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))
20 cbs 17252 . . . . . 6 class Base
217, 20cfv 6568 . . . . 5 class (Base‘𝑟)
2219, 4, 21wral 3067 . . . 4 wff 𝑦 ∈ (Base‘𝑟)((𝑥(+g𝑟)𝑦) = (1r𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))
2322, 2, 21wral 3067 . . 3 wff 𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g𝑟)𝑦) = (1r𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))
24 cnzr 20532 . . 3 class NzRing
2523, 6, 24crab 3443 . 2 class {𝑟 ∈ NzRing ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g𝑟)𝑦) = (1r𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))}
261, 25wceq 1537 1 wff LRing = {𝑟 ∈ NzRing ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g𝑟)𝑦) = (1r𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))}
Colors of variables: wff setvar class
This definition is referenced by:  islring  20560  lringnzr  20561
  Copyright terms: Public domain W3C validator