MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lringnzr Structured version   Visualization version   GIF version

Theorem lringnzr 20429
Description: A local ring is a nonzero ring. (Contributed by SN, 23-Feb-2025.)
Assertion
Ref Expression
lringnzr (𝑅 ∈ LRing β†’ 𝑅 ∈ NzRing)

Proof of Theorem lringnzr
Dummy variables π‘Ÿ π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lring 20427 . . 3 LRing = {π‘Ÿ ∈ NzRing ∣ βˆ€π‘₯ ∈ (Baseβ€˜π‘Ÿ)βˆ€π‘¦ ∈ (Baseβ€˜π‘Ÿ)((π‘₯(+gβ€˜π‘Ÿ)𝑦) = (1rβ€˜π‘Ÿ) β†’ (π‘₯ ∈ (Unitβ€˜π‘Ÿ) ∨ 𝑦 ∈ (Unitβ€˜π‘Ÿ)))}
21ssrab3 4080 . 2 LRing βŠ† NzRing
32sseli 3978 1 (𝑅 ∈ LRing β†’ 𝑅 ∈ NzRing)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∨ wo 845   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  β€˜cfv 6543  (class class class)co 7411  Basecbs 17148  +gcplusg 17201  1rcur 20075  Unitcui 20246  NzRingcnzr 20403  LRingclring 20426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-in 3955  df-ss 3965  df-lring 20427
This theorem is referenced by:  lringring  20430  lringnz  20431
  Copyright terms: Public domain W3C validator