MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lringnzr Structured version   Visualization version   GIF version

Theorem lringnzr 20567
Description: A local ring is a nonzero ring. (Contributed by SN, 23-Feb-2025.)
Assertion
Ref Expression
lringnzr (𝑅 ∈ LRing → 𝑅 ∈ NzRing)

Proof of Theorem lringnzr
Dummy variables 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lring 20565 . . 3 LRing = {𝑟 ∈ NzRing ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g𝑟)𝑦) = (1r𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))}
21ssrab3 4095 . 2 LRing ⊆ NzRing
32sseli 3994 1 (𝑅 ∈ LRing → 𝑅 ∈ NzRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 848   = wceq 1539  wcel 2108  wral 3061  cfv 6569  (class class class)co 7438  Basecbs 17254  +gcplusg 17307  1rcur 20208  Unitcui 20381  NzRingcnzr 20538  LRingclring 20564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-ss 3983  df-lring 20565
This theorem is referenced by:  lringring  20568  lringnz  20569
  Copyright terms: Public domain W3C validator