![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lringnzr | Structured version Visualization version GIF version |
Description: A local ring is a nonzero ring. (Contributed by SN, 23-Feb-2025.) |
Ref | Expression |
---|---|
lringnzr | β’ (π β LRing β π β NzRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lring 20427 | . . 3 β’ LRing = {π β NzRing β£ βπ₯ β (Baseβπ)βπ¦ β (Baseβπ)((π₯(+gβπ)π¦) = (1rβπ) β (π₯ β (Unitβπ) β¨ π¦ β (Unitβπ)))} | |
2 | 1 | ssrab3 4080 | . 2 β’ LRing β NzRing |
3 | 2 | sseli 3978 | 1 β’ (π β LRing β π β NzRing) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β¨ wo 845 = wceq 1541 β wcel 2106 βwral 3061 βcfv 6543 (class class class)co 7411 Basecbs 17148 +gcplusg 17201 1rcur 20075 Unitcui 20246 NzRingcnzr 20403 LRingclring 20426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-in 3955 df-ss 3965 df-lring 20427 |
This theorem is referenced by: lringring 20430 lringnz 20431 |
Copyright terms: Public domain | W3C validator |