| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lringnzr | Structured version Visualization version GIF version | ||
| Description: A local ring is a nonzero ring. (Contributed by SN, 23-Feb-2025.) |
| Ref | Expression |
|---|---|
| lringnzr | ⊢ (𝑅 ∈ LRing → 𝑅 ∈ NzRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lring 20507 | . . 3 ⊢ LRing = {𝑟 ∈ NzRing ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g‘𝑟)𝑦) = (1r‘𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))} | |
| 2 | 1 | ssrab3 4062 | . 2 ⊢ LRing ⊆ NzRing |
| 3 | 2 | sseli 3959 | 1 ⊢ (𝑅 ∈ LRing → 𝑅 ∈ NzRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 +gcplusg 17273 1rcur 20146 Unitcui 20323 NzRingcnzr 20480 LRingclring 20506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-ss 3948 df-lring 20507 |
| This theorem is referenced by: lringring 20510 lringnz 20511 |
| Copyright terms: Public domain | W3C validator |