MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lringnzr Structured version   Visualization version   GIF version

Theorem lringnzr 20451
Description: A local ring is a nonzero ring. (Contributed by SN, 23-Feb-2025.)
Assertion
Ref Expression
lringnzr (𝑅 ∈ LRing → 𝑅 ∈ NzRing)

Proof of Theorem lringnzr
Dummy variables 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lring 20449 . . 3 LRing = {𝑟 ∈ NzRing ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g𝑟)𝑦) = (1r𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))}
21ssrab3 4027 . 2 LRing ⊆ NzRing
32sseli 3925 1 (𝑅 ∈ LRing → 𝑅 ∈ NzRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1541  wcel 2111  wral 3047  cfv 6476  (class class class)co 7341  Basecbs 17115  +gcplusg 17156  1rcur 20094  Unitcui 20268  NzRingcnzr 20422  LRingclring 20448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-ss 3914  df-lring 20449
This theorem is referenced by:  lringring  20452  lringnz  20453
  Copyright terms: Public domain W3C validator