| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lringnzr | Structured version Visualization version GIF version | ||
| Description: A local ring is a nonzero ring. (Contributed by SN, 23-Feb-2025.) |
| Ref | Expression |
|---|---|
| lringnzr | ⊢ (𝑅 ∈ LRing → 𝑅 ∈ NzRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lring 20454 | . . 3 ⊢ LRing = {𝑟 ∈ NzRing ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g‘𝑟)𝑦) = (1r‘𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))} | |
| 2 | 1 | ssrab3 4047 | . 2 ⊢ LRing ⊆ NzRing |
| 3 | 2 | sseli 3944 | 1 ⊢ (𝑅 ∈ LRing → 𝑅 ∈ NzRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 +gcplusg 17226 1rcur 20096 Unitcui 20270 NzRingcnzr 20427 LRingclring 20453 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-ss 3933 df-lring 20454 |
| This theorem is referenced by: lringring 20457 lringnz 20458 |
| Copyright terms: Public domain | W3C validator |