![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lringnzr | Structured version Visualization version GIF version |
Description: A local ring is a nonzero ring. (Contributed by SN, 23-Feb-2025.) |
Ref | Expression |
---|---|
lringnzr | ⊢ (𝑅 ∈ LRing → 𝑅 ∈ NzRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lring 20567 | . . 3 ⊢ LRing = {𝑟 ∈ NzRing ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g‘𝑟)𝑦) = (1r‘𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))} | |
2 | 1 | ssrab3 4105 | . 2 ⊢ LRing ⊆ NzRing |
3 | 2 | sseli 4004 | 1 ⊢ (𝑅 ∈ LRing → 𝑅 ∈ NzRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ‘cfv 6575 (class class class)co 7450 Basecbs 17260 +gcplusg 17313 1rcur 20210 Unitcui 20383 NzRingcnzr 20540 LRingclring 20566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-ss 3993 df-lring 20567 |
This theorem is referenced by: lringring 20570 lringnz 20571 |
Copyright terms: Public domain | W3C validator |