MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islring Structured version   Visualization version   GIF version

Theorem islring 20568
Description: The predicate "is a local ring". (Contributed by SN, 23-Feb-2025.)
Hypotheses
Ref Expression
islring.b 𝐵 = (Base‘𝑅)
islring.a + = (+g𝑅)
islring.1 1 = (1r𝑅)
islring.u 𝑈 = (Unit‘𝑅)
Assertion
Ref Expression
islring (𝑅 ∈ LRing ↔ (𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) = 1 → (𝑥𝑈𝑦𝑈))))
Distinct variable group:   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   + (𝑥,𝑦)   𝑈(𝑥,𝑦)   1 (𝑥,𝑦)

Proof of Theorem islring
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6922 . . . 4 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
2 islring.b . . . 4 𝐵 = (Base‘𝑅)
31, 2eqtr4di 2798 . . 3 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
4 fveq2 6922 . . . . . . . 8 (𝑟 = 𝑅 → (+g𝑟) = (+g𝑅))
5 islring.a . . . . . . . 8 + = (+g𝑅)
64, 5eqtr4di 2798 . . . . . . 7 (𝑟 = 𝑅 → (+g𝑟) = + )
76oveqd 7467 . . . . . 6 (𝑟 = 𝑅 → (𝑥(+g𝑟)𝑦) = (𝑥 + 𝑦))
8 fveq2 6922 . . . . . . 7 (𝑟 = 𝑅 → (1r𝑟) = (1r𝑅))
9 islring.1 . . . . . . 7 1 = (1r𝑅)
108, 9eqtr4di 2798 . . . . . 6 (𝑟 = 𝑅 → (1r𝑟) = 1 )
117, 10eqeq12d 2756 . . . . 5 (𝑟 = 𝑅 → ((𝑥(+g𝑟)𝑦) = (1r𝑟) ↔ (𝑥 + 𝑦) = 1 ))
12 fveq2 6922 . . . . . . . 8 (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅))
13 islring.u . . . . . . . 8 𝑈 = (Unit‘𝑅)
1412, 13eqtr4di 2798 . . . . . . 7 (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈)
1514eleq2d 2830 . . . . . 6 (𝑟 = 𝑅 → (𝑥 ∈ (Unit‘𝑟) ↔ 𝑥𝑈))
1614eleq2d 2830 . . . . . 6 (𝑟 = 𝑅 → (𝑦 ∈ (Unit‘𝑟) ↔ 𝑦𝑈))
1715, 16orbi12d 917 . . . . 5 (𝑟 = 𝑅 → ((𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)) ↔ (𝑥𝑈𝑦𝑈)))
1811, 17imbi12d 344 . . . 4 (𝑟 = 𝑅 → (((𝑥(+g𝑟)𝑦) = (1r𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟))) ↔ ((𝑥 + 𝑦) = 1 → (𝑥𝑈𝑦𝑈))))
193, 18raleqbidv 3354 . . 3 (𝑟 = 𝑅 → (∀𝑦 ∈ (Base‘𝑟)((𝑥(+g𝑟)𝑦) = (1r𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟))) ↔ ∀𝑦𝐵 ((𝑥 + 𝑦) = 1 → (𝑥𝑈𝑦𝑈))))
203, 19raleqbidv 3354 . 2 (𝑟 = 𝑅 → (∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g𝑟)𝑦) = (1r𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟))) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) = 1 → (𝑥𝑈𝑦𝑈))))
21 df-lring 20567 . 2 LRing = {𝑟 ∈ NzRing ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g𝑟)𝑦) = (1r𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))}
2220, 21elrab2 3711 1 (𝑅 ∈ LRing ↔ (𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) = 1 → (𝑥𝑈𝑦𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wral 3067  cfv 6575  (class class class)co 7450  Basecbs 17260  +gcplusg 17313  1rcur 20210  Unitcui 20383  NzRingcnzr 20540  LRingclring 20566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6527  df-fv 6583  df-ov 7453  df-lring 20567
This theorem is referenced by:  lringuplu  20572
  Copyright terms: Public domain W3C validator