MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islring Structured version   Visualization version   GIF version

Theorem islring 20428
Description: The predicate "is a local ring". (Contributed by SN, 23-Feb-2025.)
Hypotheses
Ref Expression
islring.b 𝐡 = (Baseβ€˜π‘…)
islring.a + = (+gβ€˜π‘…)
islring.1 1 = (1rβ€˜π‘…)
islring.u π‘ˆ = (Unitβ€˜π‘…)
Assertion
Ref Expression
islring (𝑅 ∈ LRing ↔ (𝑅 ∈ NzRing ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯ + 𝑦) = 1 β†’ (π‘₯ ∈ π‘ˆ ∨ 𝑦 ∈ π‘ˆ))))
Distinct variable group:   π‘₯,𝑅,𝑦
Allowed substitution hints:   𝐡(π‘₯,𝑦)   + (π‘₯,𝑦)   π‘ˆ(π‘₯,𝑦)   1 (π‘₯,𝑦)

Proof of Theorem islring
Dummy variable π‘Ÿ is distinct from all other variables.
StepHypRef Expression
1 fveq2 6890 . . . 4 (π‘Ÿ = 𝑅 β†’ (Baseβ€˜π‘Ÿ) = (Baseβ€˜π‘…))
2 islring.b . . . 4 𝐡 = (Baseβ€˜π‘…)
31, 2eqtr4di 2788 . . 3 (π‘Ÿ = 𝑅 β†’ (Baseβ€˜π‘Ÿ) = 𝐡)
4 fveq2 6890 . . . . . . . 8 (π‘Ÿ = 𝑅 β†’ (+gβ€˜π‘Ÿ) = (+gβ€˜π‘…))
5 islring.a . . . . . . . 8 + = (+gβ€˜π‘…)
64, 5eqtr4di 2788 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ (+gβ€˜π‘Ÿ) = + )
76oveqd 7428 . . . . . 6 (π‘Ÿ = 𝑅 β†’ (π‘₯(+gβ€˜π‘Ÿ)𝑦) = (π‘₯ + 𝑦))
8 fveq2 6890 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ (1rβ€˜π‘Ÿ) = (1rβ€˜π‘…))
9 islring.1 . . . . . . 7 1 = (1rβ€˜π‘…)
108, 9eqtr4di 2788 . . . . . 6 (π‘Ÿ = 𝑅 β†’ (1rβ€˜π‘Ÿ) = 1 )
117, 10eqeq12d 2746 . . . . 5 (π‘Ÿ = 𝑅 β†’ ((π‘₯(+gβ€˜π‘Ÿ)𝑦) = (1rβ€˜π‘Ÿ) ↔ (π‘₯ + 𝑦) = 1 ))
12 fveq2 6890 . . . . . . . 8 (π‘Ÿ = 𝑅 β†’ (Unitβ€˜π‘Ÿ) = (Unitβ€˜π‘…))
13 islring.u . . . . . . . 8 π‘ˆ = (Unitβ€˜π‘…)
1412, 13eqtr4di 2788 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ (Unitβ€˜π‘Ÿ) = π‘ˆ)
1514eleq2d 2817 . . . . . 6 (π‘Ÿ = 𝑅 β†’ (π‘₯ ∈ (Unitβ€˜π‘Ÿ) ↔ π‘₯ ∈ π‘ˆ))
1614eleq2d 2817 . . . . . 6 (π‘Ÿ = 𝑅 β†’ (𝑦 ∈ (Unitβ€˜π‘Ÿ) ↔ 𝑦 ∈ π‘ˆ))
1715, 16orbi12d 915 . . . . 5 (π‘Ÿ = 𝑅 β†’ ((π‘₯ ∈ (Unitβ€˜π‘Ÿ) ∨ 𝑦 ∈ (Unitβ€˜π‘Ÿ)) ↔ (π‘₯ ∈ π‘ˆ ∨ 𝑦 ∈ π‘ˆ)))
1811, 17imbi12d 343 . . . 4 (π‘Ÿ = 𝑅 β†’ (((π‘₯(+gβ€˜π‘Ÿ)𝑦) = (1rβ€˜π‘Ÿ) β†’ (π‘₯ ∈ (Unitβ€˜π‘Ÿ) ∨ 𝑦 ∈ (Unitβ€˜π‘Ÿ))) ↔ ((π‘₯ + 𝑦) = 1 β†’ (π‘₯ ∈ π‘ˆ ∨ 𝑦 ∈ π‘ˆ))))
193, 18raleqbidv 3340 . . 3 (π‘Ÿ = 𝑅 β†’ (βˆ€π‘¦ ∈ (Baseβ€˜π‘Ÿ)((π‘₯(+gβ€˜π‘Ÿ)𝑦) = (1rβ€˜π‘Ÿ) β†’ (π‘₯ ∈ (Unitβ€˜π‘Ÿ) ∨ 𝑦 ∈ (Unitβ€˜π‘Ÿ))) ↔ βˆ€π‘¦ ∈ 𝐡 ((π‘₯ + 𝑦) = 1 β†’ (π‘₯ ∈ π‘ˆ ∨ 𝑦 ∈ π‘ˆ))))
203, 19raleqbidv 3340 . 2 (π‘Ÿ = 𝑅 β†’ (βˆ€π‘₯ ∈ (Baseβ€˜π‘Ÿ)βˆ€π‘¦ ∈ (Baseβ€˜π‘Ÿ)((π‘₯(+gβ€˜π‘Ÿ)𝑦) = (1rβ€˜π‘Ÿ) β†’ (π‘₯ ∈ (Unitβ€˜π‘Ÿ) ∨ 𝑦 ∈ (Unitβ€˜π‘Ÿ))) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯ + 𝑦) = 1 β†’ (π‘₯ ∈ π‘ˆ ∨ 𝑦 ∈ π‘ˆ))))
21 df-lring 20427 . 2 LRing = {π‘Ÿ ∈ NzRing ∣ βˆ€π‘₯ ∈ (Baseβ€˜π‘Ÿ)βˆ€π‘¦ ∈ (Baseβ€˜π‘Ÿ)((π‘₯(+gβ€˜π‘Ÿ)𝑦) = (1rβ€˜π‘Ÿ) β†’ (π‘₯ ∈ (Unitβ€˜π‘Ÿ) ∨ 𝑦 ∈ (Unitβ€˜π‘Ÿ)))}
2220, 21elrab2 3685 1 (𝑅 ∈ LRing ↔ (𝑅 ∈ NzRing ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯ + 𝑦) = 1 β†’ (π‘₯ ∈ π‘ˆ ∨ 𝑦 ∈ π‘ˆ))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∨ wo 843   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059  β€˜cfv 6542  (class class class)co 7411  Basecbs 17148  +gcplusg 17201  1rcur 20075  Unitcui 20246  NzRingcnzr 20403  LRingclring 20426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-iota 6494  df-fv 6550  df-ov 7414  df-lring 20427
This theorem is referenced by:  lringuplu  20432
  Copyright terms: Public domain W3C validator