Step | Hyp | Ref
| Expression |
1 | | cltb 21216 |
. 2
class
<bag |
2 | | vr |
. . 3
setvar 𝑟 |
3 | | vi |
. . 3
setvar 𝑖 |
4 | | cvv 3441 |
. . 3
class
V |
5 | | vx |
. . . . . . . 8
setvar 𝑥 |
6 | 5 | cv 1539 |
. . . . . . 7
class 𝑥 |
7 | | vy |
. . . . . . . 8
setvar 𝑦 |
8 | 7 | cv 1539 |
. . . . . . 7
class 𝑦 |
9 | 6, 8 | cpr 4575 |
. . . . . 6
class {𝑥, 𝑦} |
10 | | vh |
. . . . . . . . . . 11
setvar ℎ |
11 | 10 | cv 1539 |
. . . . . . . . . 10
class ℎ |
12 | 11 | ccnv 5619 |
. . . . . . . . 9
class ◡ℎ |
13 | | cn 12074 |
. . . . . . . . 9
class
ℕ |
14 | 12, 13 | cima 5623 |
. . . . . . . 8
class (◡ℎ “ ℕ) |
15 | | cfn 8804 |
. . . . . . . 8
class
Fin |
16 | 14, 15 | wcel 2105 |
. . . . . . 7
wff (◡ℎ “ ℕ) ∈ Fin |
17 | | cn0 12334 |
. . . . . . . 8
class
ℕ0 |
18 | 3 | cv 1539 |
. . . . . . . 8
class 𝑖 |
19 | | cmap 8686 |
. . . . . . . 8
class
↑m |
20 | 17, 18, 19 | co 7337 |
. . . . . . 7
class
(ℕ0 ↑m 𝑖) |
21 | 16, 10, 20 | crab 3403 |
. . . . . 6
class {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} |
22 | 9, 21 | wss 3898 |
. . . . 5
wff {𝑥, 𝑦} ⊆ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} |
23 | | vz |
. . . . . . . . . 10
setvar 𝑧 |
24 | 23 | cv 1539 |
. . . . . . . . 9
class 𝑧 |
25 | 24, 6 | cfv 6479 |
. . . . . . . 8
class (𝑥‘𝑧) |
26 | 24, 8 | cfv 6479 |
. . . . . . . 8
class (𝑦‘𝑧) |
27 | | clt 11110 |
. . . . . . . 8
class
< |
28 | 25, 26, 27 | wbr 5092 |
. . . . . . 7
wff (𝑥‘𝑧) < (𝑦‘𝑧) |
29 | | vw |
. . . . . . . . . . 11
setvar 𝑤 |
30 | 29 | cv 1539 |
. . . . . . . . . 10
class 𝑤 |
31 | 2 | cv 1539 |
. . . . . . . . . 10
class 𝑟 |
32 | 24, 30, 31 | wbr 5092 |
. . . . . . . . 9
wff 𝑧𝑟𝑤 |
33 | 30, 6 | cfv 6479 |
. . . . . . . . . 10
class (𝑥‘𝑤) |
34 | 30, 8 | cfv 6479 |
. . . . . . . . . 10
class (𝑦‘𝑤) |
35 | 33, 34 | wceq 1540 |
. . . . . . . . 9
wff (𝑥‘𝑤) = (𝑦‘𝑤) |
36 | 32, 35 | wi 4 |
. . . . . . . 8
wff (𝑧𝑟𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)) |
37 | 36, 29, 18 | wral 3061 |
. . . . . . 7
wff
∀𝑤 ∈
𝑖 (𝑧𝑟𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)) |
38 | 28, 37 | wa 396 |
. . . . . 6
wff ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑖 (𝑧𝑟𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) |
39 | 38, 23, 18 | wrex 3070 |
. . . . 5
wff
∃𝑧 ∈
𝑖 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑖 (𝑧𝑟𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) |
40 | 22, 39 | wa 396 |
. . . 4
wff ({𝑥, 𝑦} ⊆ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧
∃𝑧 ∈ 𝑖 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑖 (𝑧𝑟𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))) |
41 | 40, 5, 7 | copab 5154 |
. . 3
class
{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧
∃𝑧 ∈ 𝑖 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑖 (𝑧𝑟𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))} |
42 | 2, 3, 4, 4, 41 | cmpo 7339 |
. 2
class (𝑟 ∈ V, 𝑖 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧
∃𝑧 ∈ 𝑖 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑖 (𝑧𝑟𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))}) |
43 | 1, 42 | wceq 1540 |
1
wff
<bag = (𝑟
∈ V, 𝑖 ∈ V
↦ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧
∃𝑧 ∈ 𝑖 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑖 (𝑧𝑟𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))}) |