Detailed syntax breakdown of Definition df-ltbag
| Step | Hyp | Ref
| Expression |
| 1 | | cltb 21928 |
. 2
class
<bag |
| 2 | | vr |
. . 3
setvar 𝑟 |
| 3 | | vi |
. . 3
setvar 𝑖 |
| 4 | | cvv 3479 |
. . 3
class
V |
| 5 | | vx |
. . . . . . . 8
setvar 𝑥 |
| 6 | 5 | cv 1538 |
. . . . . . 7
class 𝑥 |
| 7 | | vy |
. . . . . . . 8
setvar 𝑦 |
| 8 | 7 | cv 1538 |
. . . . . . 7
class 𝑦 |
| 9 | 6, 8 | cpr 4627 |
. . . . . 6
class {𝑥, 𝑦} |
| 10 | | vh |
. . . . . . . . . . 11
setvar ℎ |
| 11 | 10 | cv 1538 |
. . . . . . . . . 10
class ℎ |
| 12 | 11 | ccnv 5683 |
. . . . . . . . 9
class ◡ℎ |
| 13 | | cn 12267 |
. . . . . . . . 9
class
ℕ |
| 14 | 12, 13 | cima 5687 |
. . . . . . . 8
class (◡ℎ “ ℕ) |
| 15 | | cfn 8986 |
. . . . . . . 8
class
Fin |
| 16 | 14, 15 | wcel 2107 |
. . . . . . 7
wff (◡ℎ “ ℕ) ∈ Fin |
| 17 | | cn0 12528 |
. . . . . . . 8
class
ℕ0 |
| 18 | 3 | cv 1538 |
. . . . . . . 8
class 𝑖 |
| 19 | | cmap 8867 |
. . . . . . . 8
class
↑m |
| 20 | 17, 18, 19 | co 7432 |
. . . . . . 7
class
(ℕ0 ↑m 𝑖) |
| 21 | 16, 10, 20 | crab 3435 |
. . . . . 6
class {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} |
| 22 | 9, 21 | wss 3950 |
. . . . 5
wff {𝑥, 𝑦} ⊆ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} |
| 23 | | vz |
. . . . . . . . . 10
setvar 𝑧 |
| 24 | 23 | cv 1538 |
. . . . . . . . 9
class 𝑧 |
| 25 | 24, 6 | cfv 6560 |
. . . . . . . 8
class (𝑥‘𝑧) |
| 26 | 24, 8 | cfv 6560 |
. . . . . . . 8
class (𝑦‘𝑧) |
| 27 | | clt 11296 |
. . . . . . . 8
class
< |
| 28 | 25, 26, 27 | wbr 5142 |
. . . . . . 7
wff (𝑥‘𝑧) < (𝑦‘𝑧) |
| 29 | | vw |
. . . . . . . . . . 11
setvar 𝑤 |
| 30 | 29 | cv 1538 |
. . . . . . . . . 10
class 𝑤 |
| 31 | 2 | cv 1538 |
. . . . . . . . . 10
class 𝑟 |
| 32 | 24, 30, 31 | wbr 5142 |
. . . . . . . . 9
wff 𝑧𝑟𝑤 |
| 33 | 30, 6 | cfv 6560 |
. . . . . . . . . 10
class (𝑥‘𝑤) |
| 34 | 30, 8 | cfv 6560 |
. . . . . . . . . 10
class (𝑦‘𝑤) |
| 35 | 33, 34 | wceq 1539 |
. . . . . . . . 9
wff (𝑥‘𝑤) = (𝑦‘𝑤) |
| 36 | 32, 35 | wi 4 |
. . . . . . . 8
wff (𝑧𝑟𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)) |
| 37 | 36, 29, 18 | wral 3060 |
. . . . . . 7
wff
∀𝑤 ∈
𝑖 (𝑧𝑟𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)) |
| 38 | 28, 37 | wa 395 |
. . . . . 6
wff ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑖 (𝑧𝑟𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) |
| 39 | 38, 23, 18 | wrex 3069 |
. . . . 5
wff
∃𝑧 ∈
𝑖 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑖 (𝑧𝑟𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) |
| 40 | 22, 39 | wa 395 |
. . . 4
wff ({𝑥, 𝑦} ⊆ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧
∃𝑧 ∈ 𝑖 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑖 (𝑧𝑟𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))) |
| 41 | 40, 5, 7 | copab 5204 |
. . 3
class
{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧
∃𝑧 ∈ 𝑖 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑖 (𝑧𝑟𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))} |
| 42 | 2, 3, 4, 4, 41 | cmpo 7434 |
. 2
class (𝑟 ∈ V, 𝑖 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧
∃𝑧 ∈ 𝑖 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑖 (𝑧𝑟𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))}) |
| 43 | 1, 42 | wceq 1539 |
1
wff
<bag = (𝑟
∈ V, 𝑖 ∈ V
↦ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧
∃𝑧 ∈ 𝑖 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑖 (𝑧𝑟𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))}) |