MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltbval Structured version   Visualization version   GIF version

Theorem ltbval 21244
Description: Value of the well-order on finite bags. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
ltbval.c 𝐶 = (𝑇 <bag 𝐼)
ltbval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
ltbval.i (𝜑𝐼𝑉)
ltbval.t (𝜑𝑇𝑊)
Assertion
Ref Expression
ltbval (𝜑𝐶 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))})
Distinct variable groups:   𝑥,𝑦,𝐷   𝑤,,𝑥,𝑦,𝑧,𝐼   𝜑,,𝑥,𝑦   𝑤,𝑇,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝐶(𝑥,𝑦,𝑧,𝑤,)   𝐷(𝑧,𝑤,)   𝑇()   𝑉(𝑥,𝑦,𝑧,𝑤,)   𝑊(𝑥,𝑦,𝑧,𝑤,)

Proof of Theorem ltbval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltbval.c . 2 𝐶 = (𝑇 <bag 𝐼)
2 ltbval.t . . 3 (𝜑𝑇𝑊)
3 ltbval.i . . 3 (𝜑𝐼𝑉)
4 elex 3450 . . . 4 (𝑇𝑊𝑇 ∈ V)
5 elex 3450 . . . 4 (𝐼𝑉𝐼 ∈ V)
6 simpr 485 . . . . . . . . . . 11 ((𝑟 = 𝑇𝑖 = 𝐼) → 𝑖 = 𝐼)
76oveq2d 7291 . . . . . . . . . 10 ((𝑟 = 𝑇𝑖 = 𝐼) → (ℕ0m 𝑖) = (ℕ0m 𝐼))
8 rabeq 3418 . . . . . . . . . 10 ((ℕ0m 𝑖) = (ℕ0m 𝐼) → { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
97, 8syl 17 . . . . . . . . 9 ((𝑟 = 𝑇𝑖 = 𝐼) → { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
10 ltbval.d . . . . . . . . 9 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
119, 10eqtr4di 2796 . . . . . . . 8 ((𝑟 = 𝑇𝑖 = 𝐼) → { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} = 𝐷)
1211sseq2d 3953 . . . . . . 7 ((𝑟 = 𝑇𝑖 = 𝐼) → ({𝑥, 𝑦} ⊆ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↔ {𝑥, 𝑦} ⊆ 𝐷))
13 simpl 483 . . . . . . . . . . . 12 ((𝑟 = 𝑇𝑖 = 𝐼) → 𝑟 = 𝑇)
1413breqd 5085 . . . . . . . . . . 11 ((𝑟 = 𝑇𝑖 = 𝐼) → (𝑧𝑟𝑤𝑧𝑇𝑤))
1514imbi1d 342 . . . . . . . . . 10 ((𝑟 = 𝑇𝑖 = 𝐼) → ((𝑧𝑟𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))
166, 15raleqbidv 3336 . . . . . . . . 9 ((𝑟 = 𝑇𝑖 = 𝐼) → (∀𝑤𝑖 (𝑧𝑟𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))
1716anbi2d 629 . . . . . . . 8 ((𝑟 = 𝑇𝑖 = 𝐼) → (((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝑖 (𝑧𝑟𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))))
186, 17rexeqbidv 3337 . . . . . . 7 ((𝑟 = 𝑇𝑖 = 𝐼) → (∃𝑧𝑖 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝑖 (𝑧𝑟𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))))
1912, 18anbi12d 631 . . . . . 6 ((𝑟 = 𝑇𝑖 = 𝐼) → (({𝑥, 𝑦} ⊆ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∧ ∃𝑧𝑖 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝑖 (𝑧𝑟𝑤 → (𝑥𝑤) = (𝑦𝑤)))) ↔ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))))
2019opabbidv 5140 . . . . 5 ((𝑟 = 𝑇𝑖 = 𝐼) → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∧ ∃𝑧𝑖 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝑖 (𝑧𝑟𝑤 → (𝑥𝑤) = (𝑦𝑤))))} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))})
21 df-ltbag 21115 . . . . 5 <bag = (𝑟 ∈ V, 𝑖 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∧ ∃𝑧𝑖 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝑖 (𝑧𝑟𝑤 → (𝑥𝑤) = (𝑦𝑤))))})
22 vex 3436 . . . . . . . . 9 𝑥 ∈ V
23 vex 3436 . . . . . . . . 9 𝑦 ∈ V
2422, 23prss 4753 . . . . . . . 8 ((𝑥𝐷𝑦𝐷) ↔ {𝑥, 𝑦} ⊆ 𝐷)
2524anbi1i 624 . . . . . . 7 (((𝑥𝐷𝑦𝐷) ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))) ↔ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))))
2625opabbii 5141 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐷𝑦𝐷) ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))}
27 ovex 7308 . . . . . . . . 9 (ℕ0m 𝐼) ∈ V
2810, 27rabex2 5258 . . . . . . . 8 𝐷 ∈ V
2928, 28xpex 7603 . . . . . . 7 (𝐷 × 𝐷) ∈ V
30 opabssxp 5679 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐷𝑦𝐷) ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))} ⊆ (𝐷 × 𝐷)
3129, 30ssexi 5246 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐷𝑦𝐷) ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))} ∈ V
3226, 31eqeltrri 2836 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))} ∈ V
3320, 21, 32ovmpoa 7428 . . . 4 ((𝑇 ∈ V ∧ 𝐼 ∈ V) → (𝑇 <bag 𝐼) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))})
344, 5, 33syl2an 596 . . 3 ((𝑇𝑊𝐼𝑉) → (𝑇 <bag 𝐼) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))})
352, 3, 34syl2anc 584 . 2 (𝜑 → (𝑇 <bag 𝐼) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))})
361, 35eqtrid 2790 1 (𝜑𝐶 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  wss 3887  {cpr 4563   class class class wbr 5074  {copab 5136   × cxp 5587  ccnv 5588  cima 5592  cfv 6433  (class class class)co 7275  m cmap 8615  Fincfn 8733   < clt 11009  cn 11973  0cn0 12233   <bag cltb 21110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-ltbag 21115
This theorem is referenced by:  ltbwe  21245
  Copyright terms: Public domain W3C validator