Step | Hyp | Ref
| Expression |
1 | | ltbval.c |
. 2
⊢ 𝐶 = (𝑇 <bag 𝐼) |
2 | | ltbval.t |
. . 3
⊢ (𝜑 → 𝑇 ∈ 𝑊) |
3 | | ltbval.i |
. . 3
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
4 | | elex 3440 |
. . . 4
⊢ (𝑇 ∈ 𝑊 → 𝑇 ∈ V) |
5 | | elex 3440 |
. . . 4
⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ V) |
6 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑟 = 𝑇 ∧ 𝑖 = 𝐼) → 𝑖 = 𝐼) |
7 | 6 | oveq2d 7271 |
. . . . . . . . . 10
⊢ ((𝑟 = 𝑇 ∧ 𝑖 = 𝐼) → (ℕ0
↑m 𝑖) =
(ℕ0 ↑m 𝐼)) |
8 | | rabeq 3408 |
. . . . . . . . . 10
⊢
((ℕ0 ↑m 𝑖) = (ℕ0 ↑m
𝐼) → {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
9 | 7, 8 | syl 17 |
. . . . . . . . 9
⊢ ((𝑟 = 𝑇 ∧ 𝑖 = 𝐼) → {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
10 | | ltbval.d |
. . . . . . . . 9
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
11 | 9, 10 | eqtr4di 2797 |
. . . . . . . 8
⊢ ((𝑟 = 𝑇 ∧ 𝑖 = 𝐼) → {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} = 𝐷) |
12 | 11 | sseq2d 3949 |
. . . . . . 7
⊢ ((𝑟 = 𝑇 ∧ 𝑖 = 𝐼) → ({𝑥, 𝑦} ⊆ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ↔ {𝑥, 𝑦} ⊆ 𝐷)) |
13 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝑟 = 𝑇 ∧ 𝑖 = 𝐼) → 𝑟 = 𝑇) |
14 | 13 | breqd 5081 |
. . . . . . . . . . 11
⊢ ((𝑟 = 𝑇 ∧ 𝑖 = 𝐼) → (𝑧𝑟𝑤 ↔ 𝑧𝑇𝑤)) |
15 | 14 | imbi1d 341 |
. . . . . . . . . 10
⊢ ((𝑟 = 𝑇 ∧ 𝑖 = 𝐼) → ((𝑧𝑟𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)) ↔ (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))) |
16 | 6, 15 | raleqbidv 3327 |
. . . . . . . . 9
⊢ ((𝑟 = 𝑇 ∧ 𝑖 = 𝐼) → (∀𝑤 ∈ 𝑖 (𝑧𝑟𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)) ↔ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))) |
17 | 16 | anbi2d 628 |
. . . . . . . 8
⊢ ((𝑟 = 𝑇 ∧ 𝑖 = 𝐼) → (((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑖 (𝑧𝑟𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))) |
18 | 6, 17 | rexeqbidv 3328 |
. . . . . . 7
⊢ ((𝑟 = 𝑇 ∧ 𝑖 = 𝐼) → (∃𝑧 ∈ 𝑖 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑖 (𝑧𝑟𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))) |
19 | 12, 18 | anbi12d 630 |
. . . . . 6
⊢ ((𝑟 = 𝑇 ∧ 𝑖 = 𝐼) → (({𝑥, 𝑦} ⊆ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧
∃𝑧 ∈ 𝑖 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑖 (𝑧𝑟𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))) ↔ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))))) |
20 | 19 | opabbidv 5136 |
. . . . 5
⊢ ((𝑟 = 𝑇 ∧ 𝑖 = 𝐼) → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧
∃𝑧 ∈ 𝑖 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑖 (𝑧𝑟𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))} = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))}) |
21 | | df-ltbag 21025 |
. . . . 5
⊢
<bag = (𝑟
∈ V, 𝑖 ∈ V
↦ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧
∃𝑧 ∈ 𝑖 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑖 (𝑧𝑟𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))}) |
22 | | vex 3426 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
23 | | vex 3426 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
24 | 22, 23 | prss 4750 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) ↔ {𝑥, 𝑦} ⊆ 𝐷) |
25 | 24 | anbi1i 623 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) ∧ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))) ↔ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))) |
26 | 25 | opabbii 5137 |
. . . . . 6
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) ∧ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))} = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))} |
27 | | ovex 7288 |
. . . . . . . . 9
⊢
(ℕ0 ↑m 𝐼) ∈ V |
28 | 10, 27 | rabex2 5253 |
. . . . . . . 8
⊢ 𝐷 ∈ V |
29 | 28, 28 | xpex 7581 |
. . . . . . 7
⊢ (𝐷 × 𝐷) ∈ V |
30 | | opabssxp 5669 |
. . . . . . 7
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) ∧ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))} ⊆ (𝐷 × 𝐷) |
31 | 29, 30 | ssexi 5241 |
. . . . . 6
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) ∧ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))} ∈ V |
32 | 26, 31 | eqeltrri 2836 |
. . . . 5
⊢
{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))} ∈ V |
33 | 20, 21, 32 | ovmpoa 7406 |
. . . 4
⊢ ((𝑇 ∈ V ∧ 𝐼 ∈ V) → (𝑇 <bag 𝐼) = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))}) |
34 | 4, 5, 33 | syl2an 595 |
. . 3
⊢ ((𝑇 ∈ 𝑊 ∧ 𝐼 ∈ 𝑉) → (𝑇 <bag 𝐼) = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))}) |
35 | 2, 3, 34 | syl2anc 583 |
. 2
⊢ (𝜑 → (𝑇 <bag 𝐼) = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))}) |
36 | 1, 35 | eqtrid 2790 |
1
⊢ (𝜑 → 𝐶 = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))}) |