MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltbval Structured version   Visualization version   GIF version

Theorem ltbval 20246
Description: Value of the well-order on finite bags. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
ltbval.c 𝐶 = (𝑇 <bag 𝐼)
ltbval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
ltbval.i (𝜑𝐼𝑉)
ltbval.t (𝜑𝑇𝑊)
Assertion
Ref Expression
ltbval (𝜑𝐶 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))})
Distinct variable groups:   𝑥,𝑦,𝐷   𝑤,,𝑥,𝑦,𝑧,𝐼   𝜑,,𝑥,𝑦   𝑤,𝑇,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝐶(𝑥,𝑦,𝑧,𝑤,)   𝐷(𝑧,𝑤,)   𝑇()   𝑉(𝑥,𝑦,𝑧,𝑤,)   𝑊(𝑥,𝑦,𝑧,𝑤,)

Proof of Theorem ltbval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltbval.c . 2 𝐶 = (𝑇 <bag 𝐼)
2 ltbval.t . . 3 (𝜑𝑇𝑊)
3 ltbval.i . . 3 (𝜑𝐼𝑉)
4 elex 3513 . . . 4 (𝑇𝑊𝑇 ∈ V)
5 elex 3513 . . . 4 (𝐼𝑉𝐼 ∈ V)
6 simpr 487 . . . . . . . . . . 11 ((𝑟 = 𝑇𝑖 = 𝐼) → 𝑖 = 𝐼)
76oveq2d 7166 . . . . . . . . . 10 ((𝑟 = 𝑇𝑖 = 𝐼) → (ℕ0m 𝑖) = (ℕ0m 𝐼))
8 rabeq 3484 . . . . . . . . . 10 ((ℕ0m 𝑖) = (ℕ0m 𝐼) → { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
97, 8syl 17 . . . . . . . . 9 ((𝑟 = 𝑇𝑖 = 𝐼) → { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
10 ltbval.d . . . . . . . . 9 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
119, 10syl6eqr 2874 . . . . . . . 8 ((𝑟 = 𝑇𝑖 = 𝐼) → { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} = 𝐷)
1211sseq2d 3999 . . . . . . 7 ((𝑟 = 𝑇𝑖 = 𝐼) → ({𝑥, 𝑦} ⊆ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↔ {𝑥, 𝑦} ⊆ 𝐷))
13 simpl 485 . . . . . . . . . . . 12 ((𝑟 = 𝑇𝑖 = 𝐼) → 𝑟 = 𝑇)
1413breqd 5070 . . . . . . . . . . 11 ((𝑟 = 𝑇𝑖 = 𝐼) → (𝑧𝑟𝑤𝑧𝑇𝑤))
1514imbi1d 344 . . . . . . . . . 10 ((𝑟 = 𝑇𝑖 = 𝐼) → ((𝑧𝑟𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))
166, 15raleqbidv 3402 . . . . . . . . 9 ((𝑟 = 𝑇𝑖 = 𝐼) → (∀𝑤𝑖 (𝑧𝑟𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))
1716anbi2d 630 . . . . . . . 8 ((𝑟 = 𝑇𝑖 = 𝐼) → (((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝑖 (𝑧𝑟𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))))
186, 17rexeqbidv 3403 . . . . . . 7 ((𝑟 = 𝑇𝑖 = 𝐼) → (∃𝑧𝑖 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝑖 (𝑧𝑟𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))))
1912, 18anbi12d 632 . . . . . 6 ((𝑟 = 𝑇𝑖 = 𝐼) → (({𝑥, 𝑦} ⊆ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∧ ∃𝑧𝑖 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝑖 (𝑧𝑟𝑤 → (𝑥𝑤) = (𝑦𝑤)))) ↔ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))))
2019opabbidv 5125 . . . . 5 ((𝑟 = 𝑇𝑖 = 𝐼) → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∧ ∃𝑧𝑖 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝑖 (𝑧𝑟𝑤 → (𝑥𝑤) = (𝑦𝑤))))} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))})
21 df-ltbag 20133 . . . . 5 <bag = (𝑟 ∈ V, 𝑖 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∧ ∃𝑧𝑖 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝑖 (𝑧𝑟𝑤 → (𝑥𝑤) = (𝑦𝑤))))})
22 vex 3498 . . . . . . . . 9 𝑥 ∈ V
23 vex 3498 . . . . . . . . 9 𝑦 ∈ V
2422, 23prss 4747 . . . . . . . 8 ((𝑥𝐷𝑦𝐷) ↔ {𝑥, 𝑦} ⊆ 𝐷)
2524anbi1i 625 . . . . . . 7 (((𝑥𝐷𝑦𝐷) ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))) ↔ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))))
2625opabbii 5126 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐷𝑦𝐷) ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))}
27 ovex 7183 . . . . . . . . 9 (ℕ0m 𝐼) ∈ V
2810, 27rabex2 5230 . . . . . . . 8 𝐷 ∈ V
2928, 28xpex 7470 . . . . . . 7 (𝐷 × 𝐷) ∈ V
30 opabssxp 5638 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐷𝑦𝐷) ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))} ⊆ (𝐷 × 𝐷)
3129, 30ssexi 5219 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐷𝑦𝐷) ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))} ∈ V
3226, 31eqeltrri 2910 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))} ∈ V
3320, 21, 32ovmpoa 7299 . . . 4 ((𝑇 ∈ V ∧ 𝐼 ∈ V) → (𝑇 <bag 𝐼) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))})
344, 5, 33syl2an 597 . . 3 ((𝑇𝑊𝐼𝑉) → (𝑇 <bag 𝐼) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))})
352, 3, 34syl2anc 586 . 2 (𝜑 → (𝑇 <bag 𝐼) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))})
361, 35syl5eq 2868 1 (𝜑𝐶 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wral 3138  wrex 3139  {crab 3142  Vcvv 3495  wss 3936  {cpr 4563   class class class wbr 5059  {copab 5121   × cxp 5548  ccnv 5549  cima 5553  cfv 6350  (class class class)co 7150  m cmap 8400  Fincfn 8503   < clt 10669  cn 11632  0cn0 11891   <bag cltb 20128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-iota 6309  df-fun 6352  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-ltbag 20133
This theorem is referenced by:  ltbwe  20247
  Copyright terms: Public domain W3C validator