Detailed syntax breakdown of Definition df-opsr
| Step | Hyp | Ref
| Expression |
| 1 | | copws 21928 |
. 2
class
ordPwSer |
| 2 | | vi |
. . 3
setvar 𝑖 |
| 3 | | vs |
. . 3
setvar 𝑠 |
| 4 | | cvv 3480 |
. . 3
class
V |
| 5 | | vr |
. . . 4
setvar 𝑟 |
| 6 | 2 | cv 1539 |
. . . . . 6
class 𝑖 |
| 7 | 6, 6 | cxp 5683 |
. . . . 5
class (𝑖 × 𝑖) |
| 8 | 7 | cpw 4600 |
. . . 4
class 𝒫
(𝑖 × 𝑖) |
| 9 | | vp |
. . . . 5
setvar 𝑝 |
| 10 | 3 | cv 1539 |
. . . . . 6
class 𝑠 |
| 11 | | cmps 21924 |
. . . . . 6
class
mPwSer |
| 12 | 6, 10, 11 | co 7431 |
. . . . 5
class (𝑖 mPwSer 𝑠) |
| 13 | 9 | cv 1539 |
. . . . . 6
class 𝑝 |
| 14 | | cnx 17230 |
. . . . . . . 8
class
ndx |
| 15 | | cple 17304 |
. . . . . . . 8
class
le |
| 16 | 14, 15 | cfv 6561 |
. . . . . . 7
class
(le‘ndx) |
| 17 | | vx |
. . . . . . . . . . . 12
setvar 𝑥 |
| 18 | 17 | cv 1539 |
. . . . . . . . . . 11
class 𝑥 |
| 19 | | vy |
. . . . . . . . . . . 12
setvar 𝑦 |
| 20 | 19 | cv 1539 |
. . . . . . . . . . 11
class 𝑦 |
| 21 | 18, 20 | cpr 4628 |
. . . . . . . . . 10
class {𝑥, 𝑦} |
| 22 | | cbs 17247 |
. . . . . . . . . . 11
class
Base |
| 23 | 13, 22 | cfv 6561 |
. . . . . . . . . 10
class
(Base‘𝑝) |
| 24 | 21, 23 | wss 3951 |
. . . . . . . . 9
wff {𝑥, 𝑦} ⊆ (Base‘𝑝) |
| 25 | | vz |
. . . . . . . . . . . . . . . 16
setvar 𝑧 |
| 26 | 25 | cv 1539 |
. . . . . . . . . . . . . . 15
class 𝑧 |
| 27 | 26, 18 | cfv 6561 |
. . . . . . . . . . . . . 14
class (𝑥‘𝑧) |
| 28 | 26, 20 | cfv 6561 |
. . . . . . . . . . . . . 14
class (𝑦‘𝑧) |
| 29 | | cplt 18354 |
. . . . . . . . . . . . . . 15
class
lt |
| 30 | 10, 29 | cfv 6561 |
. . . . . . . . . . . . . 14
class
(lt‘𝑠) |
| 31 | 27, 28, 30 | wbr 5143 |
. . . . . . . . . . . . 13
wff (𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) |
| 32 | | vw |
. . . . . . . . . . . . . . . . 17
setvar 𝑤 |
| 33 | 32 | cv 1539 |
. . . . . . . . . . . . . . . 16
class 𝑤 |
| 34 | 5 | cv 1539 |
. . . . . . . . . . . . . . . . 17
class 𝑟 |
| 35 | | cltb 21927 |
. . . . . . . . . . . . . . . . 17
class
<bag |
| 36 | 34, 6, 35 | co 7431 |
. . . . . . . . . . . . . . . 16
class (𝑟 <bag 𝑖) |
| 37 | 33, 26, 36 | wbr 5143 |
. . . . . . . . . . . . . . 15
wff 𝑤(𝑟 <bag 𝑖)𝑧 |
| 38 | 33, 18 | cfv 6561 |
. . . . . . . . . . . . . . . 16
class (𝑥‘𝑤) |
| 39 | 33, 20 | cfv 6561 |
. . . . . . . . . . . . . . . 16
class (𝑦‘𝑤) |
| 40 | 38, 39 | wceq 1540 |
. . . . . . . . . . . . . . 15
wff (𝑥‘𝑤) = (𝑦‘𝑤) |
| 41 | 37, 40 | wi 4 |
. . . . . . . . . . . . . 14
wff (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)) |
| 42 | | vd |
. . . . . . . . . . . . . . 15
setvar 𝑑 |
| 43 | 42 | cv 1539 |
. . . . . . . . . . . . . 14
class 𝑑 |
| 44 | 41, 32, 43 | wral 3061 |
. . . . . . . . . . . . 13
wff
∀𝑤 ∈
𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)) |
| 45 | 31, 44 | wa 395 |
. . . . . . . . . . . 12
wff ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) |
| 46 | 45, 25, 43 | wrex 3070 |
. . . . . . . . . . 11
wff
∃𝑧 ∈
𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) |
| 47 | | vh |
. . . . . . . . . . . . . . . 16
setvar ℎ |
| 48 | 47 | cv 1539 |
. . . . . . . . . . . . . . 15
class ℎ |
| 49 | 48 | ccnv 5684 |
. . . . . . . . . . . . . 14
class ◡ℎ |
| 50 | | cn 12266 |
. . . . . . . . . . . . . 14
class
ℕ |
| 51 | 49, 50 | cima 5688 |
. . . . . . . . . . . . 13
class (◡ℎ “ ℕ) |
| 52 | | cfn 8985 |
. . . . . . . . . . . . 13
class
Fin |
| 53 | 51, 52 | wcel 2108 |
. . . . . . . . . . . 12
wff (◡ℎ “ ℕ) ∈ Fin |
| 54 | | cn0 12526 |
. . . . . . . . . . . . 13
class
ℕ0 |
| 55 | | cmap 8866 |
. . . . . . . . . . . . 13
class
↑m |
| 56 | 54, 6, 55 | co 7431 |
. . . . . . . . . . . 12
class
(ℕ0 ↑m 𝑖) |
| 57 | 53, 47, 56 | crab 3436 |
. . . . . . . . . . 11
class {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} |
| 58 | 46, 42, 57 | wsbc 3788 |
. . . . . . . . . 10
wff
[{ℎ ∈
(ℕ0 ↑m 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) |
| 59 | 17, 19 | weq 1962 |
. . . . . . . . . 10
wff 𝑥 = 𝑦 |
| 60 | 58, 59 | wo 848 |
. . . . . . . . 9
wff
([{ℎ ∈
(ℕ0 ↑m 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦) |
| 61 | 24, 60 | wa 395 |
. . . . . . . 8
wff ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦)) |
| 62 | 61, 17, 19 | copab 5205 |
. . . . . . 7
class
{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))} |
| 63 | 16, 62 | cop 4632 |
. . . . . 6
class
〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉 |
| 64 | | csts 17200 |
. . . . . 6
class
sSet |
| 65 | 13, 63, 64 | co 7431 |
. . . . 5
class (𝑝 sSet 〈(le‘ndx),
{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉) |
| 66 | 9, 12, 65 | csb 3899 |
. . . 4
class
⦋(𝑖
mPwSer 𝑠) / 𝑝⦌(𝑝 sSet 〈(le‘ndx),
{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉) |
| 67 | 5, 8, 66 | cmpt 5225 |
. . 3
class (𝑟 ∈ 𝒫 (𝑖 × 𝑖) ↦ ⦋(𝑖 mPwSer 𝑠) / 𝑝⦌(𝑝 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉)) |
| 68 | 2, 3, 4, 4, 67 | cmpo 7433 |
. 2
class (𝑖 ∈ V, 𝑠 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑖 × 𝑖) ↦ ⦋(𝑖 mPwSer 𝑠) / 𝑝⦌(𝑝 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉))) |
| 69 | 1, 68 | wceq 1540 |
1
wff ordPwSer =
(𝑖 ∈ V, 𝑠 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑖 × 𝑖) ↦ ⦋(𝑖 mPwSer 𝑠) / 𝑝⦌(𝑝 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉))) |