Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnfset Structured version   Visualization version   GIF version

Theorem ltrnfset 38131
Description: The set of all lattice translations for a lattice 𝐾. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
ltrnset.l = (le‘𝐾)
ltrnset.j = (join‘𝐾)
ltrnset.m = (meet‘𝐾)
ltrnset.a 𝐴 = (Atoms‘𝐾)
ltrnset.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
ltrnfset (𝐾𝐶 → (LTrn‘𝐾) = (𝑤𝐻 ↦ {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))}))
Distinct variable groups:   𝑞,𝑝,𝐴   𝑤,𝐻   𝑓,𝑝,𝑞,𝑤,𝐾
Allowed substitution hints:   𝐴(𝑤,𝑓)   𝐶(𝑤,𝑓,𝑞,𝑝)   𝐻(𝑓,𝑞,𝑝)   (𝑤,𝑓,𝑞,𝑝)   (𝑤,𝑓,𝑞,𝑝)   (𝑤,𝑓,𝑞,𝑝)

Proof of Theorem ltrnfset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3450 . 2 (𝐾𝐶𝐾 ∈ V)
2 fveq2 6774 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 ltrnset.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3eqtr4di 2796 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6774 . . . . . 6 (𝑘 = 𝐾 → (LDil‘𝑘) = (LDil‘𝐾))
65fveq1d 6776 . . . . 5 (𝑘 = 𝐾 → ((LDil‘𝑘)‘𝑤) = ((LDil‘𝐾)‘𝑤))
7 fveq2 6774 . . . . . . 7 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
8 ltrnset.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
97, 8eqtr4di 2796 . . . . . 6 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
10 fveq2 6774 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
11 ltrnset.l . . . . . . . . . . . 12 = (le‘𝐾)
1210, 11eqtr4di 2796 . . . . . . . . . . 11 (𝑘 = 𝐾 → (le‘𝑘) = )
1312breqd 5085 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑝(le‘𝑘)𝑤𝑝 𝑤))
1413notbid 318 . . . . . . . . 9 (𝑘 = 𝐾 → (¬ 𝑝(le‘𝑘)𝑤 ↔ ¬ 𝑝 𝑤))
1512breqd 5085 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑞(le‘𝑘)𝑤𝑞 𝑤))
1615notbid 318 . . . . . . . . 9 (𝑘 = 𝐾 → (¬ 𝑞(le‘𝑘)𝑤 ↔ ¬ 𝑞 𝑤))
1714, 16anbi12d 631 . . . . . . . 8 (𝑘 = 𝐾 → ((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) ↔ (¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤)))
18 fveq2 6774 . . . . . . . . . . 11 (𝑘 = 𝐾 → (meet‘𝑘) = (meet‘𝐾))
19 ltrnset.m . . . . . . . . . . 11 = (meet‘𝐾)
2018, 19eqtr4di 2796 . . . . . . . . . 10 (𝑘 = 𝐾 → (meet‘𝑘) = )
21 fveq2 6774 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾))
22 ltrnset.j . . . . . . . . . . . 12 = (join‘𝐾)
2321, 22eqtr4di 2796 . . . . . . . . . . 11 (𝑘 = 𝐾 → (join‘𝑘) = )
2423oveqd 7292 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑝(join‘𝑘)(𝑓𝑝)) = (𝑝 (𝑓𝑝)))
25 eqidd 2739 . . . . . . . . . 10 (𝑘 = 𝐾𝑤 = 𝑤)
2620, 24, 25oveq123d 7296 . . . . . . . . 9 (𝑘 = 𝐾 → ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤) = ((𝑝 (𝑓𝑝)) 𝑤))
2723oveqd 7292 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑞(join‘𝑘)(𝑓𝑞)) = (𝑞 (𝑓𝑞)))
2820, 27, 25oveq123d 7296 . . . . . . . . 9 (𝑘 = 𝐾 → ((𝑞(join‘𝑘)(𝑓𝑞))(meet‘𝑘)𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))
2926, 28eqeq12d 2754 . . . . . . . 8 (𝑘 = 𝐾 → (((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓𝑞))(meet‘𝑘)𝑤) ↔ ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤)))
3017, 29imbi12d 345 . . . . . . 7 (𝑘 = 𝐾 → (((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓𝑞))(meet‘𝑘)𝑤)) ↔ ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))))
319, 30raleqbidv 3336 . . . . . 6 (𝑘 = 𝐾 → (∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓𝑞))(meet‘𝑘)𝑤)) ↔ ∀𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))))
329, 31raleqbidv 3336 . . . . 5 (𝑘 = 𝐾 → (∀𝑝 ∈ (Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓𝑞))(meet‘𝑘)𝑤)) ↔ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))))
336, 32rabeqbidv 3420 . . . 4 (𝑘 = 𝐾 → {𝑓 ∈ ((LDil‘𝑘)‘𝑤) ∣ ∀𝑝 ∈ (Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓𝑞))(meet‘𝑘)𝑤))} = {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))})
344, 33mpteq12dv 5165 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ ((LDil‘𝑘)‘𝑤) ∣ ∀𝑝 ∈ (Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓𝑞))(meet‘𝑘)𝑤))}) = (𝑤𝐻 ↦ {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))}))
35 df-ltrn 38119 . . 3 LTrn = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ ((LDil‘𝑘)‘𝑤) ∣ ∀𝑝 ∈ (Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓𝑞))(meet‘𝑘)𝑤))}))
3634, 35, 3mptfvmpt 7104 . 2 (𝐾 ∈ V → (LTrn‘𝐾) = (𝑤𝐻 ↦ {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))}))
371, 36syl 17 1 (𝐾𝐶 → (LTrn‘𝐾) = (𝑤𝐻 ↦ {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  {crab 3068  Vcvv 3432   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  lecple 16969  joincjn 18029  meetcmee 18030  Atomscatm 37277  LHypclh 37998  LDilcldil 38114  LTrncltrn 38115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-ltrn 38119
This theorem is referenced by:  ltrnset  38132
  Copyright terms: Public domain W3C validator