| Step | Hyp | Ref
| Expression |
| 1 | | elex 3485 |
. 2
⊢ (𝐾 ∈ 𝐶 → 𝐾 ∈ V) |
| 2 | | fveq2 6881 |
. . . . 5
⊢ (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾)) |
| 3 | | ltrnset.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
| 4 | 2, 3 | eqtr4di 2789 |
. . . 4
⊢ (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻) |
| 5 | | fveq2 6881 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (LDil‘𝑘) = (LDil‘𝐾)) |
| 6 | 5 | fveq1d 6883 |
. . . . 5
⊢ (𝑘 = 𝐾 → ((LDil‘𝑘)‘𝑤) = ((LDil‘𝐾)‘𝑤)) |
| 7 | | fveq2 6881 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾)) |
| 8 | | ltrnset.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
| 9 | 7, 8 | eqtr4di 2789 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴) |
| 10 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾)) |
| 11 | | ltrnset.l |
. . . . . . . . . . . 12
⊢ ≤ =
(le‘𝐾) |
| 12 | 10, 11 | eqtr4di 2789 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐾 → (le‘𝑘) = ≤ ) |
| 13 | 12 | breqd 5135 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐾 → (𝑝(le‘𝑘)𝑤 ↔ 𝑝 ≤ 𝑤)) |
| 14 | 13 | notbid 318 |
. . . . . . . . 9
⊢ (𝑘 = 𝐾 → (¬ 𝑝(le‘𝑘)𝑤 ↔ ¬ 𝑝 ≤ 𝑤)) |
| 15 | 12 | breqd 5135 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐾 → (𝑞(le‘𝑘)𝑤 ↔ 𝑞 ≤ 𝑤)) |
| 16 | 15 | notbid 318 |
. . . . . . . . 9
⊢ (𝑘 = 𝐾 → (¬ 𝑞(le‘𝑘)𝑤 ↔ ¬ 𝑞 ≤ 𝑤)) |
| 17 | 14, 16 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → ((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) ↔ (¬ 𝑝 ≤ 𝑤 ∧ ¬ 𝑞 ≤ 𝑤))) |
| 18 | | fveq2 6881 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐾 → (meet‘𝑘) = (meet‘𝐾)) |
| 19 | | ltrnset.m |
. . . . . . . . . . 11
⊢ ∧ =
(meet‘𝐾) |
| 20 | 18, 19 | eqtr4di 2789 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐾 → (meet‘𝑘) = ∧ ) |
| 21 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾)) |
| 22 | | ltrnset.j |
. . . . . . . . . . . 12
⊢ ∨ =
(join‘𝐾) |
| 23 | 21, 22 | eqtr4di 2789 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐾 → (join‘𝑘) = ∨ ) |
| 24 | 23 | oveqd 7427 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐾 → (𝑝(join‘𝑘)(𝑓‘𝑝)) = (𝑝 ∨ (𝑓‘𝑝))) |
| 25 | | eqidd 2737 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐾 → 𝑤 = 𝑤) |
| 26 | 20, 24, 25 | oveq123d 7431 |
. . . . . . . . 9
⊢ (𝑘 = 𝐾 → ((𝑝(join‘𝑘)(𝑓‘𝑝))(meet‘𝑘)𝑤) = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤)) |
| 27 | 23 | oveqd 7427 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐾 → (𝑞(join‘𝑘)(𝑓‘𝑞)) = (𝑞 ∨ (𝑓‘𝑞))) |
| 28 | 20, 27, 25 | oveq123d 7431 |
. . . . . . . . 9
⊢ (𝑘 = 𝐾 → ((𝑞(join‘𝑘)(𝑓‘𝑞))(meet‘𝑘)𝑤) = ((𝑞 ∨ (𝑓‘𝑞)) ∧ 𝑤)) |
| 29 | 26, 28 | eqeq12d 2752 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → (((𝑝(join‘𝑘)(𝑓‘𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓‘𝑞))(meet‘𝑘)𝑤) ↔ ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤) = ((𝑞 ∨ (𝑓‘𝑞)) ∧ 𝑤))) |
| 30 | 17, 29 | imbi12d 344 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓‘𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓‘𝑞))(meet‘𝑘)𝑤)) ↔ ((¬ 𝑝 ≤ 𝑤 ∧ ¬ 𝑞 ≤ 𝑤) → ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤) = ((𝑞 ∨ (𝑓‘𝑞)) ∧ 𝑤)))) |
| 31 | 9, 30 | raleqbidv 3329 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓‘𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓‘𝑞))(meet‘𝑘)𝑤)) ↔ ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑤 ∧ ¬ 𝑞 ≤ 𝑤) → ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤) = ((𝑞 ∨ (𝑓‘𝑞)) ∧ 𝑤)))) |
| 32 | 9, 31 | raleqbidv 3329 |
. . . . 5
⊢ (𝑘 = 𝐾 → (∀𝑝 ∈ (Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓‘𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓‘𝑞))(meet‘𝑘)𝑤)) ↔ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑤 ∧ ¬ 𝑞 ≤ 𝑤) → ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤) = ((𝑞 ∨ (𝑓‘𝑞)) ∧ 𝑤)))) |
| 33 | 6, 32 | rabeqbidv 3439 |
. . . 4
⊢ (𝑘 = 𝐾 → {𝑓 ∈ ((LDil‘𝑘)‘𝑤) ∣ ∀𝑝 ∈ (Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓‘𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓‘𝑞))(meet‘𝑘)𝑤))} = {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑤 ∧ ¬ 𝑞 ≤ 𝑤) → ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤) = ((𝑞 ∨ (𝑓‘𝑞)) ∧ 𝑤))}) |
| 34 | 4, 33 | mpteq12dv 5212 |
. . 3
⊢ (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ ((LDil‘𝑘)‘𝑤) ∣ ∀𝑝 ∈ (Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓‘𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓‘𝑞))(meet‘𝑘)𝑤))}) = (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑤 ∧ ¬ 𝑞 ≤ 𝑤) → ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤) = ((𝑞 ∨ (𝑓‘𝑞)) ∧ 𝑤))})) |
| 35 | | df-ltrn 40129 |
. . 3
⊢ LTrn =
(𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ ((LDil‘𝑘)‘𝑤) ∣ ∀𝑝 ∈ (Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓‘𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓‘𝑞))(meet‘𝑘)𝑤))})) |
| 36 | 34, 35, 3 | mptfvmpt 7225 |
. 2
⊢ (𝐾 ∈ V →
(LTrn‘𝐾) = (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑤 ∧ ¬ 𝑞 ≤ 𝑤) → ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤) = ((𝑞 ∨ (𝑓‘𝑞)) ∧ 𝑤))})) |
| 37 | 1, 36 | syl 17 |
1
⊢ (𝐾 ∈ 𝐶 → (LTrn‘𝐾) = (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑤 ∧ ¬ 𝑞 ≤ 𝑤) → ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤) = ((𝑞 ∨ (𝑓‘𝑞)) ∧ 𝑤))})) |