Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegfval Structured version   Visualization version   GIF version

Theorem mdegfval 24666
 Description: Value of the multivariate degree function. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by AV, 25-Jun-2019.)
Hypotheses
Ref Expression
mdegval.d 𝐷 = (𝐼 mDeg 𝑅)
mdegval.p 𝑃 = (𝐼 mPoly 𝑅)
mdegval.b 𝐵 = (Base‘𝑃)
mdegval.z 0 = (0g𝑅)
mdegval.a 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
mdegval.h 𝐻 = (𝐴 ↦ (ℂfld Σg ))
Assertion
Ref Expression
mdegfval 𝐷 = (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < ))
Distinct variable groups:   𝐴,   𝐵,𝑓   𝑓,𝐼   𝑚,𝐼   𝑅,𝑓   0 ,   𝑓,
Allowed substitution hints:   𝐴(𝑓,𝑚)   𝐵(,𝑚)   𝐷(𝑓,,𝑚)   𝑃(𝑓,,𝑚)   𝑅(,𝑚)   𝐻(𝑓,,𝑚)   𝐼()   0 (𝑓,𝑚)

Proof of Theorem mdegfval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegval.d . 2 𝐷 = (𝐼 mDeg 𝑅)
2 oveq12 7148 . . . . . . . . 9 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPoly 𝑟) = (𝐼 mPoly 𝑅))
3 mdegval.p . . . . . . . . 9 𝑃 = (𝐼 mPoly 𝑅)
42, 3eqtr4di 2854 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPoly 𝑟) = 𝑃)
54fveq2d 6653 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘(𝑖 mPoly 𝑟)) = (Base‘𝑃))
6 mdegval.b . . . . . . 7 𝐵 = (Base‘𝑃)
75, 6eqtr4di 2854 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘(𝑖 mPoly 𝑟)) = 𝐵)
8 fveq2 6649 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
9 mdegval.z . . . . . . . . . . . 12 0 = (0g𝑅)
108, 9eqtr4di 2854 . . . . . . . . . . 11 (𝑟 = 𝑅 → (0g𝑟) = 0 )
1110oveq2d 7155 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑓 supp (0g𝑟)) = (𝑓 supp 0 ))
1211mpteq1d 5122 . . . . . . . . 9 (𝑟 = 𝑅 → ( ∈ (𝑓 supp (0g𝑟)) ↦ (ℂfld Σg )) = ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )))
1312rneqd 5776 . . . . . . . 8 (𝑟 = 𝑅 → ran ( ∈ (𝑓 supp (0g𝑟)) ↦ (ℂfld Σg )) = ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )))
1413supeq1d 8898 . . . . . . 7 (𝑟 = 𝑅 → sup(ran ( ∈ (𝑓 supp (0g𝑟)) ↦ (ℂfld Σg )), ℝ*, < ) = sup(ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )), ℝ*, < ))
1514adantl 485 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → sup(ran ( ∈ (𝑓 supp (0g𝑟)) ↦ (ℂfld Σg )), ℝ*, < ) = sup(ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )), ℝ*, < ))
167, 15mpteq12dv 5118 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ sup(ran ( ∈ (𝑓 supp (0g𝑟)) ↦ (ℂfld Σg )), ℝ*, < )) = (𝑓𝐵 ↦ sup(ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )), ℝ*, < )))
17 df-mdeg 24659 . . . . 5 mDeg = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ sup(ran ( ∈ (𝑓 supp (0g𝑟)) ↦ (ℂfld Σg )), ℝ*, < )))
186fvexi 6663 . . . . . 6 𝐵 ∈ V
1918mptex 6967 . . . . 5 (𝑓𝐵 ↦ sup(ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )), ℝ*, < )) ∈ V
2016, 17, 19ovmpoa 7288 . . . 4 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mDeg 𝑅) = (𝑓𝐵 ↦ sup(ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )), ℝ*, < )))
21 mdegval.h . . . . . . . . . 10 𝐻 = (𝐴 ↦ (ℂfld Σg ))
2221reseq1i 5818 . . . . . . . . 9 (𝐻 ↾ (𝑓 supp 0 )) = ((𝐴 ↦ (ℂfld Σg )) ↾ (𝑓 supp 0 ))
23 suppssdm 7830 . . . . . . . . . . 11 (𝑓 supp 0 ) ⊆ dom 𝑓
24 eqid 2801 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
25 mdegval.a . . . . . . . . . . . 12 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
26 simpr 488 . . . . . . . . . . . 12 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → 𝑓𝐵)
273, 24, 6, 25, 26mplelf 20674 . . . . . . . . . . 11 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → 𝑓:𝐴⟶(Base‘𝑅))
2823, 27fssdm 6508 . . . . . . . . . 10 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → (𝑓 supp 0 ) ⊆ 𝐴)
2928resmptd 5879 . . . . . . . . 9 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → ((𝐴 ↦ (ℂfld Σg )) ↾ (𝑓 supp 0 )) = ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )))
3022, 29syl5req 2849 . . . . . . . 8 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )) = (𝐻 ↾ (𝑓 supp 0 )))
3130rneqd 5776 . . . . . . 7 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )) = ran (𝐻 ↾ (𝑓 supp 0 )))
32 df-ima 5536 . . . . . . 7 (𝐻 “ (𝑓 supp 0 )) = ran (𝐻 ↾ (𝑓 supp 0 ))
3331, 32eqtr4di 2854 . . . . . 6 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )) = (𝐻 “ (𝑓 supp 0 )))
3433supeq1d 8898 . . . . 5 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → sup(ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )), ℝ*, < ) = sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < ))
3534mpteq2dva 5128 . . . 4 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝑓𝐵 ↦ sup(ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )), ℝ*, < )) = (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )))
3620, 35eqtrd 2836 . . 3 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mDeg 𝑅) = (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )))
37 reldmmdeg 24661 . . . . . 6 Rel dom mDeg
3837ovprc 7177 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mDeg 𝑅) = ∅)
39 mpt0 6466 . . . . 5 (𝑓 ∈ ∅ ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )) = ∅
4038, 39eqtr4di 2854 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mDeg 𝑅) = (𝑓 ∈ ∅ ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )))
41 reldmmpl 20668 . . . . . . . . 9 Rel dom mPoly
4241ovprc 7177 . . . . . . . 8 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPoly 𝑅) = ∅)
433, 42syl5eq 2848 . . . . . . 7 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑃 = ∅)
4443fveq2d 6653 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (Base‘𝑃) = (Base‘∅))
45 base0 16531 . . . . . 6 ∅ = (Base‘∅)
4644, 6, 453eqtr4g 2861 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅)
4746mpteq1d 5122 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )) = (𝑓 ∈ ∅ ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )))
4840, 47eqtr4d 2839 . . 3 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mDeg 𝑅) = (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )))
4936, 48pm2.61i 185 . 2 (𝐼 mDeg 𝑅) = (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < ))
501, 49eqtri 2824 1 𝐷 = (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < ))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∧ wa 399   = wceq 1538   ∈ wcel 2112  {crab 3113  Vcvv 3444  ∅c0 4246   ↦ cmpt 5113  ◡ccnv 5522  ran crn 5524   ↾ cres 5525   “ cima 5526  ‘cfv 6328  (class class class)co 7139   supp csupp 7817   ↑m cmap 8393  Fincfn 8496  supcsup 8892  ℝ*cxr 10667   < clt 10668  ℕcn 11629  ℕ0cn0 11889  Basecbs 16478  0gc0g 16708   Σg cgsu 16709  ℂfldccnfld 20094   mPoly cmpl 20594   mDeg cmdg 24657 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-sup 8894  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-sca 16576  df-vsca 16577  df-tset 16579  df-psr 20597  df-mpl 20599  df-mdeg 24659 This theorem is referenced by:  mdegval  24667  mdegxrf  24672  mdegpropd  24688
 Copyright terms: Public domain W3C validator