MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegfval Structured version   Visualization version   GIF version

Theorem mdegfval 25325
Description: Value of the multivariate degree function. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by AV, 25-Jun-2019.)
Hypotheses
Ref Expression
mdegval.d 𝐷 = (𝐼 mDeg 𝑅)
mdegval.p 𝑃 = (𝐼 mPoly 𝑅)
mdegval.b 𝐵 = (Base‘𝑃)
mdegval.z 0 = (0g𝑅)
mdegval.a 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
mdegval.h 𝐻 = (𝐴 ↦ (ℂfld Σg ))
Assertion
Ref Expression
mdegfval 𝐷 = (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < ))
Distinct variable groups:   𝐴,   𝐵,𝑓   𝑓,𝐼   𝑚,𝐼   𝑅,𝑓   0 ,   𝑓,
Allowed substitution hints:   𝐴(𝑓,𝑚)   𝐵(,𝑚)   𝐷(𝑓,,𝑚)   𝑃(𝑓,,𝑚)   𝑅(,𝑚)   𝐻(𝑓,,𝑚)   𝐼()   0 (𝑓,𝑚)

Proof of Theorem mdegfval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegval.d . 2 𝐷 = (𝐼 mDeg 𝑅)
2 oveq12 7338 . . . . . . . . 9 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPoly 𝑟) = (𝐼 mPoly 𝑅))
3 mdegval.p . . . . . . . . 9 𝑃 = (𝐼 mPoly 𝑅)
42, 3eqtr4di 2794 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPoly 𝑟) = 𝑃)
54fveq2d 6823 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘(𝑖 mPoly 𝑟)) = (Base‘𝑃))
6 mdegval.b . . . . . . 7 𝐵 = (Base‘𝑃)
75, 6eqtr4di 2794 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘(𝑖 mPoly 𝑟)) = 𝐵)
8 fveq2 6819 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
9 mdegval.z . . . . . . . . . . . 12 0 = (0g𝑅)
108, 9eqtr4di 2794 . . . . . . . . . . 11 (𝑟 = 𝑅 → (0g𝑟) = 0 )
1110oveq2d 7345 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑓 supp (0g𝑟)) = (𝑓 supp 0 ))
1211mpteq1d 5184 . . . . . . . . 9 (𝑟 = 𝑅 → ( ∈ (𝑓 supp (0g𝑟)) ↦ (ℂfld Σg )) = ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )))
1312rneqd 5873 . . . . . . . 8 (𝑟 = 𝑅 → ran ( ∈ (𝑓 supp (0g𝑟)) ↦ (ℂfld Σg )) = ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )))
1413supeq1d 9295 . . . . . . 7 (𝑟 = 𝑅 → sup(ran ( ∈ (𝑓 supp (0g𝑟)) ↦ (ℂfld Σg )), ℝ*, < ) = sup(ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )), ℝ*, < ))
1514adantl 482 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → sup(ran ( ∈ (𝑓 supp (0g𝑟)) ↦ (ℂfld Σg )), ℝ*, < ) = sup(ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )), ℝ*, < ))
167, 15mpteq12dv 5180 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ sup(ran ( ∈ (𝑓 supp (0g𝑟)) ↦ (ℂfld Σg )), ℝ*, < )) = (𝑓𝐵 ↦ sup(ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )), ℝ*, < )))
17 df-mdeg 25315 . . . . 5 mDeg = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ sup(ran ( ∈ (𝑓 supp (0g𝑟)) ↦ (ℂfld Σg )), ℝ*, < )))
186fvexi 6833 . . . . . 6 𝐵 ∈ V
1918mptex 7149 . . . . 5 (𝑓𝐵 ↦ sup(ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )), ℝ*, < )) ∈ V
2016, 17, 19ovmpoa 7482 . . . 4 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mDeg 𝑅) = (𝑓𝐵 ↦ sup(ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )), ℝ*, < )))
21 mdegval.h . . . . . . . . . 10 𝐻 = (𝐴 ↦ (ℂfld Σg ))
2221reseq1i 5913 . . . . . . . . 9 (𝐻 ↾ (𝑓 supp 0 )) = ((𝐴 ↦ (ℂfld Σg )) ↾ (𝑓 supp 0 ))
23 suppssdm 8055 . . . . . . . . . . 11 (𝑓 supp 0 ) ⊆ dom 𝑓
24 eqid 2736 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
25 mdegval.a . . . . . . . . . . . 12 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
26 simpr 485 . . . . . . . . . . . 12 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → 𝑓𝐵)
273, 24, 6, 25, 26mplelf 21302 . . . . . . . . . . 11 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → 𝑓:𝐴⟶(Base‘𝑅))
2823, 27fssdm 6665 . . . . . . . . . 10 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → (𝑓 supp 0 ) ⊆ 𝐴)
2928resmptd 5974 . . . . . . . . 9 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → ((𝐴 ↦ (ℂfld Σg )) ↾ (𝑓 supp 0 )) = ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )))
3022, 29eqtr2id 2789 . . . . . . . 8 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )) = (𝐻 ↾ (𝑓 supp 0 )))
3130rneqd 5873 . . . . . . 7 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )) = ran (𝐻 ↾ (𝑓 supp 0 )))
32 df-ima 5627 . . . . . . 7 (𝐻 “ (𝑓 supp 0 )) = ran (𝐻 ↾ (𝑓 supp 0 ))
3331, 32eqtr4di 2794 . . . . . 6 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )) = (𝐻 “ (𝑓 supp 0 )))
3433supeq1d 9295 . . . . 5 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → sup(ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )), ℝ*, < ) = sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < ))
3534mpteq2dva 5189 . . . 4 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝑓𝐵 ↦ sup(ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )), ℝ*, < )) = (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )))
3620, 35eqtrd 2776 . . 3 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mDeg 𝑅) = (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )))
37 reldmmdeg 25317 . . . . . 6 Rel dom mDeg
3837ovprc 7367 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mDeg 𝑅) = ∅)
39 mpt0 6620 . . . . 5 (𝑓 ∈ ∅ ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )) = ∅
4038, 39eqtr4di 2794 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mDeg 𝑅) = (𝑓 ∈ ∅ ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )))
41 reldmmpl 21294 . . . . . . . . 9 Rel dom mPoly
4241ovprc 7367 . . . . . . . 8 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPoly 𝑅) = ∅)
433, 42eqtrid 2788 . . . . . . 7 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑃 = ∅)
4443fveq2d 6823 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (Base‘𝑃) = (Base‘∅))
45 base0 17006 . . . . . 6 ∅ = (Base‘∅)
4644, 6, 453eqtr4g 2801 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅)
4746mpteq1d 5184 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )) = (𝑓 ∈ ∅ ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )))
4840, 47eqtr4d 2779 . . 3 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mDeg 𝑅) = (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )))
4936, 48pm2.61i 182 . 2 (𝐼 mDeg 𝑅) = (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < ))
501, 49eqtri 2764 1 𝐷 = (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396   = wceq 1540  wcel 2105  {crab 3403  Vcvv 3441  c0 4268  cmpt 5172  ccnv 5613  ran crn 5615  cres 5616  cima 5617  cfv 6473  (class class class)co 7329   supp csupp 8039  m cmap 8678  Fincfn 8796  supcsup 9289  *cxr 11101   < clt 11102  cn 12066  0cn0 12326  Basecbs 17001  0gc0g 17239   Σg cgsu 17240  fldccnfld 20695   mPoly cmpl 21207   mDeg cmdg 25313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-tp 4577  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-of 7587  df-om 7773  df-1st 7891  df-2nd 7892  df-supp 8040  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-1o 8359  df-er 8561  df-map 8680  df-en 8797  df-dom 8798  df-sdom 8799  df-fin 8800  df-fsupp 9219  df-sup 9291  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-nn 12067  df-2 12129  df-3 12130  df-4 12131  df-5 12132  df-6 12133  df-7 12134  df-8 12135  df-9 12136  df-n0 12327  df-z 12413  df-uz 12676  df-fz 13333  df-struct 16937  df-sets 16954  df-slot 16972  df-ndx 16984  df-base 17002  df-ress 17031  df-plusg 17064  df-mulr 17065  df-sca 17067  df-vsca 17068  df-tset 17070  df-psr 21210  df-mpl 21212  df-mdeg 25315
This theorem is referenced by:  mdegval  25326  mdegxrf  25331  mdegpropd  25347
  Copyright terms: Public domain W3C validator