MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegfval Structured version   Visualization version   GIF version

Theorem mdegfval 26116
Description: Value of the multivariate degree function. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by AV, 25-Jun-2019.)
Hypotheses
Ref Expression
mdegval.d 𝐷 = (𝐼 mDeg 𝑅)
mdegval.p 𝑃 = (𝐼 mPoly 𝑅)
mdegval.b 𝐵 = (Base‘𝑃)
mdegval.z 0 = (0g𝑅)
mdegval.a 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
mdegval.h 𝐻 = (𝐴 ↦ (ℂfld Σg ))
Assertion
Ref Expression
mdegfval 𝐷 = (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < ))
Distinct variable groups:   𝐴,   𝐵,𝑓   𝑓,𝐼   𝑚,𝐼   𝑅,𝑓   0 ,   𝑓,
Allowed substitution hints:   𝐴(𝑓,𝑚)   𝐵(,𝑚)   𝐷(𝑓,,𝑚)   𝑃(𝑓,,𝑚)   𝑅(,𝑚)   𝐻(𝑓,,𝑚)   𝐼()   0 (𝑓,𝑚)

Proof of Theorem mdegfval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegval.d . 2 𝐷 = (𝐼 mDeg 𝑅)
2 oveq12 7440 . . . . . . . . 9 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPoly 𝑟) = (𝐼 mPoly 𝑅))
3 mdegval.p . . . . . . . . 9 𝑃 = (𝐼 mPoly 𝑅)
42, 3eqtr4di 2793 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPoly 𝑟) = 𝑃)
54fveq2d 6911 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘(𝑖 mPoly 𝑟)) = (Base‘𝑃))
6 mdegval.b . . . . . . 7 𝐵 = (Base‘𝑃)
75, 6eqtr4di 2793 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘(𝑖 mPoly 𝑟)) = 𝐵)
8 fveq2 6907 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
9 mdegval.z . . . . . . . . . . . 12 0 = (0g𝑅)
108, 9eqtr4di 2793 . . . . . . . . . . 11 (𝑟 = 𝑅 → (0g𝑟) = 0 )
1110oveq2d 7447 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑓 supp (0g𝑟)) = (𝑓 supp 0 ))
1211mpteq1d 5243 . . . . . . . . 9 (𝑟 = 𝑅 → ( ∈ (𝑓 supp (0g𝑟)) ↦ (ℂfld Σg )) = ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )))
1312rneqd 5952 . . . . . . . 8 (𝑟 = 𝑅 → ran ( ∈ (𝑓 supp (0g𝑟)) ↦ (ℂfld Σg )) = ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )))
1413supeq1d 9484 . . . . . . 7 (𝑟 = 𝑅 → sup(ran ( ∈ (𝑓 supp (0g𝑟)) ↦ (ℂfld Σg )), ℝ*, < ) = sup(ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )), ℝ*, < ))
1514adantl 481 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → sup(ran ( ∈ (𝑓 supp (0g𝑟)) ↦ (ℂfld Σg )), ℝ*, < ) = sup(ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )), ℝ*, < ))
167, 15mpteq12dv 5239 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ sup(ran ( ∈ (𝑓 supp (0g𝑟)) ↦ (ℂfld Σg )), ℝ*, < )) = (𝑓𝐵 ↦ sup(ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )), ℝ*, < )))
17 df-mdeg 26109 . . . . 5 mDeg = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ sup(ran ( ∈ (𝑓 supp (0g𝑟)) ↦ (ℂfld Σg )), ℝ*, < )))
186fvexi 6921 . . . . . 6 𝐵 ∈ V
1918mptex 7243 . . . . 5 (𝑓𝐵 ↦ sup(ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )), ℝ*, < )) ∈ V
2016, 17, 19ovmpoa 7588 . . . 4 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mDeg 𝑅) = (𝑓𝐵 ↦ sup(ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )), ℝ*, < )))
21 mdegval.h . . . . . . . . . 10 𝐻 = (𝐴 ↦ (ℂfld Σg ))
2221reseq1i 5996 . . . . . . . . 9 (𝐻 ↾ (𝑓 supp 0 )) = ((𝐴 ↦ (ℂfld Σg )) ↾ (𝑓 supp 0 ))
23 suppssdm 8201 . . . . . . . . . . 11 (𝑓 supp 0 ) ⊆ dom 𝑓
24 eqid 2735 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
25 mdegval.a . . . . . . . . . . . 12 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
26 simpr 484 . . . . . . . . . . . 12 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → 𝑓𝐵)
273, 24, 6, 25, 26mplelf 22036 . . . . . . . . . . 11 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → 𝑓:𝐴⟶(Base‘𝑅))
2823, 27fssdm 6756 . . . . . . . . . 10 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → (𝑓 supp 0 ) ⊆ 𝐴)
2928resmptd 6060 . . . . . . . . 9 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → ((𝐴 ↦ (ℂfld Σg )) ↾ (𝑓 supp 0 )) = ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )))
3022, 29eqtr2id 2788 . . . . . . . 8 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )) = (𝐻 ↾ (𝑓 supp 0 )))
3130rneqd 5952 . . . . . . 7 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )) = ran (𝐻 ↾ (𝑓 supp 0 )))
32 df-ima 5702 . . . . . . 7 (𝐻 “ (𝑓 supp 0 )) = ran (𝐻 ↾ (𝑓 supp 0 ))
3331, 32eqtr4di 2793 . . . . . 6 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )) = (𝐻 “ (𝑓 supp 0 )))
3433supeq1d 9484 . . . . 5 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → sup(ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )), ℝ*, < ) = sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < ))
3534mpteq2dva 5248 . . . 4 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝑓𝐵 ↦ sup(ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )), ℝ*, < )) = (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )))
3620, 35eqtrd 2775 . . 3 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mDeg 𝑅) = (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )))
37 reldmmdeg 26111 . . . . . 6 Rel dom mDeg
3837ovprc 7469 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mDeg 𝑅) = ∅)
39 mpt0 6711 . . . . 5 (𝑓 ∈ ∅ ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )) = ∅
4038, 39eqtr4di 2793 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mDeg 𝑅) = (𝑓 ∈ ∅ ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )))
41 reldmmpl 22026 . . . . . . . . 9 Rel dom mPoly
4241ovprc 7469 . . . . . . . 8 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPoly 𝑅) = ∅)
433, 42eqtrid 2787 . . . . . . 7 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑃 = ∅)
4443fveq2d 6911 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (Base‘𝑃) = (Base‘∅))
45 base0 17250 . . . . . 6 ∅ = (Base‘∅)
4644, 6, 453eqtr4g 2800 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅)
4746mpteq1d 5243 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )) = (𝑓 ∈ ∅ ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )))
4840, 47eqtr4d 2778 . . 3 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mDeg 𝑅) = (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )))
4936, 48pm2.61i 182 . 2 (𝐼 mDeg 𝑅) = (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < ))
501, 49eqtri 2763 1 𝐷 = (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1537  wcel 2106  {crab 3433  Vcvv 3478  c0 4339  cmpt 5231  ccnv 5688  ran crn 5690  cres 5691  cima 5692  cfv 6563  (class class class)co 7431   supp csupp 8184  m cmap 8865  Fincfn 8984  supcsup 9478  *cxr 11292   < clt 11293  cn 12264  0cn0 12524  Basecbs 17245  0gc0g 17486   Σg cgsu 17487  fldccnfld 21382   mPoly cmpl 21944   mDeg cmdg 26107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-tset 17317  df-psr 21947  df-mpl 21949  df-mdeg 26109
This theorem is referenced by:  mdegval  26117  mdegxrf  26122  mdegpropd  26138
  Copyright terms: Public domain W3C validator