MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegfval Structured version   Visualization version   GIF version

Theorem mdegfval 26024
Description: Value of the multivariate degree function. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by AV, 25-Jun-2019.)
Hypotheses
Ref Expression
mdegval.d 𝐷 = (𝐼 mDeg 𝑅)
mdegval.p 𝑃 = (𝐼 mPoly 𝑅)
mdegval.b 𝐵 = (Base‘𝑃)
mdegval.z 0 = (0g𝑅)
mdegval.a 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
mdegval.h 𝐻 = (𝐴 ↦ (ℂfld Σg ))
Assertion
Ref Expression
mdegfval 𝐷 = (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < ))
Distinct variable groups:   𝐴,   𝐵,𝑓   𝑓,𝐼   𝑚,𝐼   𝑅,𝑓   0 ,   𝑓,
Allowed substitution hints:   𝐴(𝑓,𝑚)   𝐵(,𝑚)   𝐷(𝑓,,𝑚)   𝑃(𝑓,,𝑚)   𝑅(,𝑚)   𝐻(𝑓,,𝑚)   𝐼()   0 (𝑓,𝑚)

Proof of Theorem mdegfval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegval.d . 2 𝐷 = (𝐼 mDeg 𝑅)
2 oveq12 7419 . . . . . . . . 9 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPoly 𝑟) = (𝐼 mPoly 𝑅))
3 mdegval.p . . . . . . . . 9 𝑃 = (𝐼 mPoly 𝑅)
42, 3eqtr4di 2789 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPoly 𝑟) = 𝑃)
54fveq2d 6885 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘(𝑖 mPoly 𝑟)) = (Base‘𝑃))
6 mdegval.b . . . . . . 7 𝐵 = (Base‘𝑃)
75, 6eqtr4di 2789 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘(𝑖 mPoly 𝑟)) = 𝐵)
8 fveq2 6881 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
9 mdegval.z . . . . . . . . . . . 12 0 = (0g𝑅)
108, 9eqtr4di 2789 . . . . . . . . . . 11 (𝑟 = 𝑅 → (0g𝑟) = 0 )
1110oveq2d 7426 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑓 supp (0g𝑟)) = (𝑓 supp 0 ))
1211mpteq1d 5215 . . . . . . . . 9 (𝑟 = 𝑅 → ( ∈ (𝑓 supp (0g𝑟)) ↦ (ℂfld Σg )) = ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )))
1312rneqd 5923 . . . . . . . 8 (𝑟 = 𝑅 → ran ( ∈ (𝑓 supp (0g𝑟)) ↦ (ℂfld Σg )) = ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )))
1413supeq1d 9463 . . . . . . 7 (𝑟 = 𝑅 → sup(ran ( ∈ (𝑓 supp (0g𝑟)) ↦ (ℂfld Σg )), ℝ*, < ) = sup(ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )), ℝ*, < ))
1514adantl 481 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → sup(ran ( ∈ (𝑓 supp (0g𝑟)) ↦ (ℂfld Σg )), ℝ*, < ) = sup(ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )), ℝ*, < ))
167, 15mpteq12dv 5212 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ sup(ran ( ∈ (𝑓 supp (0g𝑟)) ↦ (ℂfld Σg )), ℝ*, < )) = (𝑓𝐵 ↦ sup(ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )), ℝ*, < )))
17 df-mdeg 26017 . . . . 5 mDeg = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ sup(ran ( ∈ (𝑓 supp (0g𝑟)) ↦ (ℂfld Σg )), ℝ*, < )))
186fvexi 6895 . . . . . 6 𝐵 ∈ V
1918mptex 7220 . . . . 5 (𝑓𝐵 ↦ sup(ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )), ℝ*, < )) ∈ V
2016, 17, 19ovmpoa 7567 . . . 4 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mDeg 𝑅) = (𝑓𝐵 ↦ sup(ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )), ℝ*, < )))
21 mdegval.h . . . . . . . . . 10 𝐻 = (𝐴 ↦ (ℂfld Σg ))
2221reseq1i 5967 . . . . . . . . 9 (𝐻 ↾ (𝑓 supp 0 )) = ((𝐴 ↦ (ℂfld Σg )) ↾ (𝑓 supp 0 ))
23 suppssdm 8181 . . . . . . . . . . 11 (𝑓 supp 0 ) ⊆ dom 𝑓
24 eqid 2736 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
25 mdegval.a . . . . . . . . . . . 12 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
26 simpr 484 . . . . . . . . . . . 12 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → 𝑓𝐵)
273, 24, 6, 25, 26mplelf 21963 . . . . . . . . . . 11 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → 𝑓:𝐴⟶(Base‘𝑅))
2823, 27fssdm 6730 . . . . . . . . . 10 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → (𝑓 supp 0 ) ⊆ 𝐴)
2928resmptd 6032 . . . . . . . . 9 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → ((𝐴 ↦ (ℂfld Σg )) ↾ (𝑓 supp 0 )) = ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )))
3022, 29eqtr2id 2784 . . . . . . . 8 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )) = (𝐻 ↾ (𝑓 supp 0 )))
3130rneqd 5923 . . . . . . 7 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )) = ran (𝐻 ↾ (𝑓 supp 0 )))
32 df-ima 5672 . . . . . . 7 (𝐻 “ (𝑓 supp 0 )) = ran (𝐻 ↾ (𝑓 supp 0 ))
3331, 32eqtr4di 2789 . . . . . 6 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )) = (𝐻 “ (𝑓 supp 0 )))
3433supeq1d 9463 . . . . 5 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → sup(ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )), ℝ*, < ) = sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < ))
3534mpteq2dva 5219 . . . 4 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝑓𝐵 ↦ sup(ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )), ℝ*, < )) = (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )))
3620, 35eqtrd 2771 . . 3 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mDeg 𝑅) = (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )))
37 reldmmdeg 26019 . . . . . 6 Rel dom mDeg
3837ovprc 7448 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mDeg 𝑅) = ∅)
39 mpt0 6685 . . . . 5 (𝑓 ∈ ∅ ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )) = ∅
4038, 39eqtr4di 2789 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mDeg 𝑅) = (𝑓 ∈ ∅ ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )))
41 reldmmpl 21953 . . . . . . . . 9 Rel dom mPoly
4241ovprc 7448 . . . . . . . 8 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPoly 𝑅) = ∅)
433, 42eqtrid 2783 . . . . . . 7 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑃 = ∅)
4443fveq2d 6885 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (Base‘𝑃) = (Base‘∅))
45 base0 17238 . . . . . 6 ∅ = (Base‘∅)
4644, 6, 453eqtr4g 2796 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅)
4746mpteq1d 5215 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )) = (𝑓 ∈ ∅ ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )))
4840, 47eqtr4d 2774 . . 3 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mDeg 𝑅) = (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )))
4936, 48pm2.61i 182 . 2 (𝐼 mDeg 𝑅) = (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < ))
501, 49eqtri 2759 1 𝐷 = (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2109  {crab 3420  Vcvv 3464  c0 4313  cmpt 5206  ccnv 5658  ran crn 5660  cres 5661  cima 5662  cfv 6536  (class class class)co 7410   supp csupp 8164  m cmap 8845  Fincfn 8964  supcsup 9457  *cxr 11273   < clt 11274  cn 12245  0cn0 12506  Basecbs 17233  0gc0g 17458   Σg cgsu 17459  fldccnfld 21320   mPoly cmpl 21871   mDeg cmdg 26015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-tset 17295  df-psr 21874  df-mpl 21876  df-mdeg 26017
This theorem is referenced by:  mdegval  26025  mdegxrf  26030  mdegpropd  26046
  Copyright terms: Public domain W3C validator