MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegfval Structured version   Visualization version   GIF version

Theorem mdegfval 24374
Description: Value of the multivariate degree function. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by AV, 25-Jun-2019.)
Hypotheses
Ref Expression
mdegval.d 𝐷 = (𝐼 mDeg 𝑅)
mdegval.p 𝑃 = (𝐼 mPoly 𝑅)
mdegval.b 𝐵 = (Base‘𝑃)
mdegval.z 0 = (0g𝑅)
mdegval.a 𝐴 = {𝑚 ∈ (ℕ0𝑚 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
mdegval.h 𝐻 = (𝐴 ↦ (ℂfld Σg ))
Assertion
Ref Expression
mdegfval 𝐷 = (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < ))
Distinct variable groups:   𝐴,   𝐵,𝑓   𝑓,𝐼   𝑚,𝐼   𝑅,𝑓   0 ,   𝑓,
Allowed substitution hints:   𝐴(𝑓,𝑚)   𝐵(,𝑚)   𝐷(𝑓,,𝑚)   𝑃(𝑓,,𝑚)   𝑅(,𝑚)   𝐻(𝑓,,𝑚)   𝐼()   0 (𝑓,𝑚)

Proof of Theorem mdegfval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegval.d . 2 𝐷 = (𝐼 mDeg 𝑅)
2 oveq12 6991 . . . . . . . . 9 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPoly 𝑟) = (𝐼 mPoly 𝑅))
3 mdegval.p . . . . . . . . 9 𝑃 = (𝐼 mPoly 𝑅)
42, 3syl6eqr 2834 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPoly 𝑟) = 𝑃)
54fveq2d 6508 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘(𝑖 mPoly 𝑟)) = (Base‘𝑃))
6 mdegval.b . . . . . . 7 𝐵 = (Base‘𝑃)
75, 6syl6eqr 2834 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘(𝑖 mPoly 𝑟)) = 𝐵)
8 fveq2 6504 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
9 mdegval.z . . . . . . . . . . . 12 0 = (0g𝑅)
108, 9syl6eqr 2834 . . . . . . . . . . 11 (𝑟 = 𝑅 → (0g𝑟) = 0 )
1110oveq2d 6998 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑓 supp (0g𝑟)) = (𝑓 supp 0 ))
1211mpteq1d 5021 . . . . . . . . 9 (𝑟 = 𝑅 → ( ∈ (𝑓 supp (0g𝑟)) ↦ (ℂfld Σg )) = ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )))
1312rneqd 5656 . . . . . . . 8 (𝑟 = 𝑅 → ran ( ∈ (𝑓 supp (0g𝑟)) ↦ (ℂfld Σg )) = ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )))
1413supeq1d 8711 . . . . . . 7 (𝑟 = 𝑅 → sup(ran ( ∈ (𝑓 supp (0g𝑟)) ↦ (ℂfld Σg )), ℝ*, < ) = sup(ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )), ℝ*, < ))
1514adantl 474 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → sup(ran ( ∈ (𝑓 supp (0g𝑟)) ↦ (ℂfld Σg )), ℝ*, < ) = sup(ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )), ℝ*, < ))
167, 15mpteq12dv 5017 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ sup(ran ( ∈ (𝑓 supp (0g𝑟)) ↦ (ℂfld Σg )), ℝ*, < )) = (𝑓𝐵 ↦ sup(ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )), ℝ*, < )))
17 df-mdeg 24367 . . . . 5 mDeg = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ sup(ran ( ∈ (𝑓 supp (0g𝑟)) ↦ (ℂfld Σg )), ℝ*, < )))
186fvexi 6518 . . . . . 6 𝐵 ∈ V
1918mptex 6818 . . . . 5 (𝑓𝐵 ↦ sup(ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )), ℝ*, < )) ∈ V
2016, 17, 19ovmpoa 7127 . . . 4 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mDeg 𝑅) = (𝑓𝐵 ↦ sup(ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )), ℝ*, < )))
21 mdegval.h . . . . . . . . . 10 𝐻 = (𝐴 ↦ (ℂfld Σg ))
2221reseq1i 5696 . . . . . . . . 9 (𝐻 ↾ (𝑓 supp 0 )) = ((𝐴 ↦ (ℂfld Σg )) ↾ (𝑓 supp 0 ))
23 suppssdm 7652 . . . . . . . . . . 11 (𝑓 supp 0 ) ⊆ dom 𝑓
24 eqid 2780 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
25 mdegval.a . . . . . . . . . . . 12 𝐴 = {𝑚 ∈ (ℕ0𝑚 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
26 simpr 477 . . . . . . . . . . . 12 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → 𝑓𝐵)
273, 24, 6, 25, 26mplelf 19939 . . . . . . . . . . 11 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → 𝑓:𝐴⟶(Base‘𝑅))
2823, 27fssdm 6365 . . . . . . . . . 10 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → (𝑓 supp 0 ) ⊆ 𝐴)
2928resmptd 5758 . . . . . . . . 9 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → ((𝐴 ↦ (ℂfld Σg )) ↾ (𝑓 supp 0 )) = ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )))
3022, 29syl5req 2829 . . . . . . . 8 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )) = (𝐻 ↾ (𝑓 supp 0 )))
3130rneqd 5656 . . . . . . 7 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )) = ran (𝐻 ↾ (𝑓 supp 0 )))
32 df-ima 5424 . . . . . . 7 (𝐻 “ (𝑓 supp 0 )) = ran (𝐻 ↾ (𝑓 supp 0 ))
3331, 32syl6eqr 2834 . . . . . 6 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )) = (𝐻 “ (𝑓 supp 0 )))
3433supeq1d 8711 . . . . 5 (((𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑓𝐵) → sup(ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )), ℝ*, < ) = sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < ))
3534mpteq2dva 5027 . . . 4 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝑓𝐵 ↦ sup(ran ( ∈ (𝑓 supp 0 ) ↦ (ℂfld Σg )), ℝ*, < )) = (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )))
3620, 35eqtrd 2816 . . 3 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mDeg 𝑅) = (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )))
37 reldmmdeg 24369 . . . . . 6 Rel dom mDeg
3837ovprc 7019 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mDeg 𝑅) = ∅)
39 mpt0 6325 . . . . 5 (𝑓 ∈ ∅ ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )) = ∅
4038, 39syl6eqr 2834 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mDeg 𝑅) = (𝑓 ∈ ∅ ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )))
41 reldmmpl 19933 . . . . . . . . 9 Rel dom mPoly
4241ovprc 7019 . . . . . . . 8 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPoly 𝑅) = ∅)
433, 42syl5eq 2828 . . . . . . 7 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑃 = ∅)
4443fveq2d 6508 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (Base‘𝑃) = (Base‘∅))
45 base0 16398 . . . . . 6 ∅ = (Base‘∅)
4644, 6, 453eqtr4g 2841 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅)
4746mpteq1d 5021 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )) = (𝑓 ∈ ∅ ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )))
4840, 47eqtr4d 2819 . . 3 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mDeg 𝑅) = (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )))
4936, 48pm2.61i 177 . 2 (𝐼 mDeg 𝑅) = (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < ))
501, 49eqtri 2804 1 𝐷 = (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 387   = wceq 1508  wcel 2051  {crab 3094  Vcvv 3417  c0 4181  cmpt 5013  ccnv 5410  ran crn 5412  cres 5413  cima 5414  cfv 6193  (class class class)co 6982   supp csupp 7639  𝑚 cmap 8212  Fincfn 8312  supcsup 8705  *cxr 10479   < clt 10480  cn 11445  0cn0 11713  Basecbs 16345  0gc0g 16575   Σg cgsu 16576   mPoly cmpl 19859  fldccnfld 20262   mDeg cmdg 24365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-rep 5053  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285  ax-cnex 10397  ax-resscn 10398  ax-1cn 10399  ax-icn 10400  ax-addcl 10401  ax-addrcl 10402  ax-mulcl 10403  ax-mulrcl 10404  ax-mulcom 10405  ax-addass 10406  ax-mulass 10407  ax-distr 10408  ax-i2m1 10409  ax-1ne0 10410  ax-1rid 10411  ax-rnegex 10412  ax-rrecex 10413  ax-cnre 10414  ax-pre-lttri 10415  ax-pre-lttrn 10416  ax-pre-ltadd 10417  ax-pre-mulgt0 10418
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-tp 4449  df-op 4451  df-uni 4718  df-int 4755  df-iun 4799  df-br 4935  df-opab 4997  df-mpt 5014  df-tr 5036  df-id 5316  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-we 5372  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-pred 5991  df-ord 6037  df-on 6038  df-lim 6039  df-suc 6040  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-riota 6943  df-ov 6985  df-oprab 6986  df-mpo 6987  df-of 7233  df-om 7403  df-1st 7507  df-2nd 7508  df-supp 7640  df-wrecs 7756  df-recs 7818  df-rdg 7856  df-1o 7911  df-oadd 7915  df-er 8095  df-map 8214  df-en 8313  df-dom 8314  df-sdom 8315  df-fin 8316  df-fsupp 8635  df-sup 8707  df-pnf 10482  df-mnf 10483  df-xr 10484  df-ltxr 10485  df-le 10486  df-sub 10678  df-neg 10679  df-nn 11446  df-2 11509  df-3 11510  df-4 11511  df-5 11512  df-6 11513  df-7 11514  df-8 11515  df-9 11516  df-n0 11714  df-z 11800  df-uz 12065  df-fz 12715  df-struct 16347  df-ndx 16348  df-slot 16349  df-base 16351  df-sets 16352  df-ress 16353  df-plusg 16440  df-mulr 16441  df-sca 16443  df-vsca 16444  df-tset 16446  df-psr 19862  df-mpl 19864  df-mdeg 24367
This theorem is referenced by:  mdegval  24375  mdegxrf  24380  mdegpropd  24396
  Copyright terms: Public domain W3C validator