Detailed syntax breakdown of Definition df-mfs
Step | Hyp | Ref
| Expression |
1 | | cmfs 33338 |
. 2
class
mFS |
2 | | vt |
. . . . . . . . 9
setvar 𝑡 |
3 | 2 | cv 1538 |
. . . . . . . 8
class 𝑡 |
4 | | cmcn 33322 |
. . . . . . . 8
class
mCN |
5 | 3, 4 | cfv 6418 |
. . . . . . 7
class
(mCN‘𝑡) |
6 | | cmvar 33323 |
. . . . . . . 8
class
mVR |
7 | 3, 6 | cfv 6418 |
. . . . . . 7
class
(mVR‘𝑡) |
8 | 5, 7 | cin 3882 |
. . . . . 6
class
((mCN‘𝑡) ∩
(mVR‘𝑡)) |
9 | | c0 4253 |
. . . . . 6
class
∅ |
10 | 8, 9 | wceq 1539 |
. . . . 5
wff
((mCN‘𝑡) ∩
(mVR‘𝑡)) =
∅ |
11 | | cmtc 33326 |
. . . . . . 7
class
mTC |
12 | 3, 11 | cfv 6418 |
. . . . . 6
class
(mTC‘𝑡) |
13 | | cmty 33324 |
. . . . . . 7
class
mType |
14 | 3, 13 | cfv 6418 |
. . . . . 6
class
(mType‘𝑡) |
15 | 7, 12, 14 | wf 6414 |
. . . . 5
wff
(mType‘𝑡):(mVR‘𝑡)⟶(mTC‘𝑡) |
16 | 10, 15 | wa 395 |
. . . 4
wff
(((mCN‘𝑡)
∩ (mVR‘𝑡)) =
∅ ∧ (mType‘𝑡):(mVR‘𝑡)⟶(mTC‘𝑡)) |
17 | | cmax 33327 |
. . . . . . 7
class
mAx |
18 | 3, 17 | cfv 6418 |
. . . . . 6
class
(mAx‘𝑡) |
19 | | cmsta 33337 |
. . . . . . 7
class
mStat |
20 | 3, 19 | cfv 6418 |
. . . . . 6
class
(mStat‘𝑡) |
21 | 18, 20 | wss 3883 |
. . . . 5
wff
(mAx‘𝑡)
⊆ (mStat‘𝑡) |
22 | 14 | ccnv 5579 |
. . . . . . . . 9
class ◡(mType‘𝑡) |
23 | | vv |
. . . . . . . . . . 11
setvar 𝑣 |
24 | 23 | cv 1538 |
. . . . . . . . . 10
class 𝑣 |
25 | 24 | csn 4558 |
. . . . . . . . 9
class {𝑣} |
26 | 22, 25 | cima 5583 |
. . . . . . . 8
class (◡(mType‘𝑡) “ {𝑣}) |
27 | | cfn 8691 |
. . . . . . . 8
class
Fin |
28 | 26, 27 | wcel 2108 |
. . . . . . 7
wff (◡(mType‘𝑡) “ {𝑣}) ∈ Fin |
29 | 28 | wn 3 |
. . . . . 6
wff ¬
(◡(mType‘𝑡) “ {𝑣}) ∈ Fin |
30 | | cmvt 33325 |
. . . . . . 7
class
mVT |
31 | 3, 30 | cfv 6418 |
. . . . . 6
class
(mVT‘𝑡) |
32 | 29, 23, 31 | wral 3063 |
. . . . 5
wff
∀𝑣 ∈
(mVT‘𝑡) ¬ (◡(mType‘𝑡) “ {𝑣}) ∈ Fin |
33 | 21, 32 | wa 395 |
. . . 4
wff
((mAx‘𝑡)
⊆ (mStat‘𝑡)
∧ ∀𝑣 ∈
(mVT‘𝑡) ¬ (◡(mType‘𝑡) “ {𝑣}) ∈ Fin) |
34 | 16, 33 | wa 395 |
. . 3
wff
((((mCN‘𝑡)
∩ (mVR‘𝑡)) =
∅ ∧ (mType‘𝑡):(mVR‘𝑡)⟶(mTC‘𝑡)) ∧ ((mAx‘𝑡) ⊆ (mStat‘𝑡) ∧ ∀𝑣 ∈ (mVT‘𝑡) ¬ (◡(mType‘𝑡) “ {𝑣}) ∈ Fin)) |
35 | 34, 2 | cab 2715 |
. 2
class {𝑡 ∣ ((((mCN‘𝑡) ∩ (mVR‘𝑡)) = ∅ ∧
(mType‘𝑡):(mVR‘𝑡)⟶(mTC‘𝑡)) ∧ ((mAx‘𝑡) ⊆ (mStat‘𝑡) ∧ ∀𝑣 ∈ (mVT‘𝑡) ¬ (◡(mType‘𝑡) “ {𝑣}) ∈ Fin))} |
36 | 1, 35 | wceq 1539 |
1
wff mFS =
{𝑡 ∣
((((mCN‘𝑡) ∩
(mVR‘𝑡)) = ∅
∧ (mType‘𝑡):(mVR‘𝑡)⟶(mTC‘𝑡)) ∧ ((mAx‘𝑡) ⊆ (mStat‘𝑡) ∧ ∀𝑣 ∈ (mVT‘𝑡) ¬ (◡(mType‘𝑡) “ {𝑣}) ∈ Fin))} |