Step | Hyp | Ref
| Expression |
1 | | fveq2 6839 |
. . . . . . 7
β’ (π‘ = π β (mCNβπ‘) = (mCNβπ)) |
2 | | ismfs.c |
. . . . . . 7
β’ πΆ = (mCNβπ) |
3 | 1, 2 | eqtr4di 2795 |
. . . . . 6
β’ (π‘ = π β (mCNβπ‘) = πΆ) |
4 | | fveq2 6839 |
. . . . . . 7
β’ (π‘ = π β (mVRβπ‘) = (mVRβπ)) |
5 | | ismfs.v |
. . . . . . 7
β’ π = (mVRβπ) |
6 | 4, 5 | eqtr4di 2795 |
. . . . . 6
β’ (π‘ = π β (mVRβπ‘) = π) |
7 | 3, 6 | ineq12d 4171 |
. . . . 5
β’ (π‘ = π β ((mCNβπ‘) β© (mVRβπ‘)) = (πΆ β© π)) |
8 | 7 | eqeq1d 2739 |
. . . 4
β’ (π‘ = π β (((mCNβπ‘) β© (mVRβπ‘)) = β
β (πΆ β© π) = β
)) |
9 | | fveq2 6839 |
. . . . . 6
β’ (π‘ = π β (mTypeβπ‘) = (mTypeβπ)) |
10 | | ismfs.y |
. . . . . 6
β’ π = (mTypeβπ) |
11 | 9, 10 | eqtr4di 2795 |
. . . . 5
β’ (π‘ = π β (mTypeβπ‘) = π) |
12 | | fveq2 6839 |
. . . . . 6
β’ (π‘ = π β (mTCβπ‘) = (mTCβπ)) |
13 | | ismfs.k |
. . . . . 6
β’ πΎ = (mTCβπ) |
14 | 12, 13 | eqtr4di 2795 |
. . . . 5
β’ (π‘ = π β (mTCβπ‘) = πΎ) |
15 | 11, 6, 14 | feq123d 6654 |
. . . 4
β’ (π‘ = π β ((mTypeβπ‘):(mVRβπ‘)βΆ(mTCβπ‘) β π:πβΆπΎ)) |
16 | 8, 15 | anbi12d 631 |
. . 3
β’ (π‘ = π β ((((mCNβπ‘) β© (mVRβπ‘)) = β
β§ (mTypeβπ‘):(mVRβπ‘)βΆ(mTCβπ‘)) β ((πΆ β© π) = β
β§ π:πβΆπΎ))) |
17 | | fveq2 6839 |
. . . . . 6
β’ (π‘ = π β (mAxβπ‘) = (mAxβπ)) |
18 | | ismfs.a |
. . . . . 6
β’ π΄ = (mAxβπ) |
19 | 17, 18 | eqtr4di 2795 |
. . . . 5
β’ (π‘ = π β (mAxβπ‘) = π΄) |
20 | | fveq2 6839 |
. . . . . 6
β’ (π‘ = π β (mStatβπ‘) = (mStatβπ)) |
21 | | ismfs.s |
. . . . . 6
β’ π = (mStatβπ) |
22 | 20, 21 | eqtr4di 2795 |
. . . . 5
β’ (π‘ = π β (mStatβπ‘) = π) |
23 | 19, 22 | sseq12d 3975 |
. . . 4
β’ (π‘ = π β ((mAxβπ‘) β (mStatβπ‘) β π΄ β π)) |
24 | | fveq2 6839 |
. . . . . 6
β’ (π‘ = π β (mVTβπ‘) = (mVTβπ)) |
25 | | ismfs.f |
. . . . . 6
β’ πΉ = (mVTβπ) |
26 | 24, 25 | eqtr4di 2795 |
. . . . 5
β’ (π‘ = π β (mVTβπ‘) = πΉ) |
27 | 11 | cnveqd 5829 |
. . . . . . . 8
β’ (π‘ = π β β‘(mTypeβπ‘) = β‘π) |
28 | 27 | imaeq1d 6010 |
. . . . . . 7
β’ (π‘ = π β (β‘(mTypeβπ‘) β {π£}) = (β‘π β {π£})) |
29 | 28 | eleq1d 2822 |
. . . . . 6
β’ (π‘ = π β ((β‘(mTypeβπ‘) β {π£}) β Fin β (β‘π β {π£}) β Fin)) |
30 | 29 | notbid 317 |
. . . . 5
β’ (π‘ = π β (Β¬ (β‘(mTypeβπ‘) β {π£}) β Fin β Β¬ (β‘π β {π£}) β Fin)) |
31 | 26, 30 | raleqbidv 3317 |
. . . 4
β’ (π‘ = π β (βπ£ β (mVTβπ‘) Β¬ (β‘(mTypeβπ‘) β {π£}) β Fin β βπ£ β πΉ Β¬ (β‘π β {π£}) β Fin)) |
32 | 23, 31 | anbi12d 631 |
. . 3
β’ (π‘ = π β (((mAxβπ‘) β (mStatβπ‘) β§ βπ£ β (mVTβπ‘) Β¬ (β‘(mTypeβπ‘) β {π£}) β Fin) β (π΄ β π β§ βπ£ β πΉ Β¬ (β‘π β {π£}) β Fin))) |
33 | 16, 32 | anbi12d 631 |
. 2
β’ (π‘ = π β (((((mCNβπ‘) β© (mVRβπ‘)) = β
β§ (mTypeβπ‘):(mVRβπ‘)βΆ(mTCβπ‘)) β§ ((mAxβπ‘) β (mStatβπ‘) β§ βπ£ β (mVTβπ‘) Β¬ (β‘(mTypeβπ‘) β {π£}) β Fin)) β (((πΆ β© π) = β
β§ π:πβΆπΎ) β§ (π΄ β π β§ βπ£ β πΉ Β¬ (β‘π β {π£}) β Fin)))) |
34 | | df-mfs 33902 |
. 2
β’ mFS =
{π‘ β£
((((mCNβπ‘) β©
(mVRβπ‘)) = β
β§ (mTypeβπ‘):(mVRβπ‘)βΆ(mTCβπ‘)) β§ ((mAxβπ‘) β (mStatβπ‘) β§ βπ£ β (mVTβπ‘) Β¬ (β‘(mTypeβπ‘) β {π£}) β Fin))} |
35 | 33, 34 | elab2g 3630 |
1
β’ (π β π β (π β mFS β (((πΆ β© π) = β
β§ π:πβΆπΎ) β§ (π΄ β π β§ βπ£ β πΉ Β¬ (β‘π β {π£}) β Fin)))) |