Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismfs Structured version   Visualization version   GIF version

Theorem ismfs 33955
Description: A formal system is a tuple ⟨mCN, mVR, mType, mVT, mTC, mAx⟩ such that: mCN and mVR are disjoint; mType is a function from mVR to mVT; mVT is a subset of mTC; mAx is a set of statements; and for each variable typecode, there are infinitely many variables of that type. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
ismfs.c 𝐢 = (mCNβ€˜π‘‡)
ismfs.v 𝑉 = (mVRβ€˜π‘‡)
ismfs.y π‘Œ = (mTypeβ€˜π‘‡)
ismfs.f 𝐹 = (mVTβ€˜π‘‡)
ismfs.k 𝐾 = (mTCβ€˜π‘‡)
ismfs.a 𝐴 = (mAxβ€˜π‘‡)
ismfs.s 𝑆 = (mStatβ€˜π‘‡)
Assertion
Ref Expression
ismfs (𝑇 ∈ π‘Š β†’ (𝑇 ∈ mFS ↔ (((𝐢 ∩ 𝑉) = βˆ… ∧ π‘Œ:π‘‰βŸΆπΎ) ∧ (𝐴 βŠ† 𝑆 ∧ βˆ€π‘£ ∈ 𝐹 Β¬ (β—‘π‘Œ β€œ {𝑣}) ∈ Fin))))
Distinct variable groups:   𝑣,𝐹   𝑣,𝑇
Allowed substitution hints:   𝐴(𝑣)   𝐢(𝑣)   𝑆(𝑣)   𝐾(𝑣)   𝑉(𝑣)   π‘Š(𝑣)   π‘Œ(𝑣)

Proof of Theorem ismfs
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6839 . . . . . . 7 (𝑑 = 𝑇 β†’ (mCNβ€˜π‘‘) = (mCNβ€˜π‘‡))
2 ismfs.c . . . . . . 7 𝐢 = (mCNβ€˜π‘‡)
31, 2eqtr4di 2795 . . . . . 6 (𝑑 = 𝑇 β†’ (mCNβ€˜π‘‘) = 𝐢)
4 fveq2 6839 . . . . . . 7 (𝑑 = 𝑇 β†’ (mVRβ€˜π‘‘) = (mVRβ€˜π‘‡))
5 ismfs.v . . . . . . 7 𝑉 = (mVRβ€˜π‘‡)
64, 5eqtr4di 2795 . . . . . 6 (𝑑 = 𝑇 β†’ (mVRβ€˜π‘‘) = 𝑉)
73, 6ineq12d 4171 . . . . 5 (𝑑 = 𝑇 β†’ ((mCNβ€˜π‘‘) ∩ (mVRβ€˜π‘‘)) = (𝐢 ∩ 𝑉))
87eqeq1d 2739 . . . 4 (𝑑 = 𝑇 β†’ (((mCNβ€˜π‘‘) ∩ (mVRβ€˜π‘‘)) = βˆ… ↔ (𝐢 ∩ 𝑉) = βˆ…))
9 fveq2 6839 . . . . . 6 (𝑑 = 𝑇 β†’ (mTypeβ€˜π‘‘) = (mTypeβ€˜π‘‡))
10 ismfs.y . . . . . 6 π‘Œ = (mTypeβ€˜π‘‡)
119, 10eqtr4di 2795 . . . . 5 (𝑑 = 𝑇 β†’ (mTypeβ€˜π‘‘) = π‘Œ)
12 fveq2 6839 . . . . . 6 (𝑑 = 𝑇 β†’ (mTCβ€˜π‘‘) = (mTCβ€˜π‘‡))
13 ismfs.k . . . . . 6 𝐾 = (mTCβ€˜π‘‡)
1412, 13eqtr4di 2795 . . . . 5 (𝑑 = 𝑇 β†’ (mTCβ€˜π‘‘) = 𝐾)
1511, 6, 14feq123d 6654 . . . 4 (𝑑 = 𝑇 β†’ ((mTypeβ€˜π‘‘):(mVRβ€˜π‘‘)⟢(mTCβ€˜π‘‘) ↔ π‘Œ:π‘‰βŸΆπΎ))
168, 15anbi12d 631 . . 3 (𝑑 = 𝑇 β†’ ((((mCNβ€˜π‘‘) ∩ (mVRβ€˜π‘‘)) = βˆ… ∧ (mTypeβ€˜π‘‘):(mVRβ€˜π‘‘)⟢(mTCβ€˜π‘‘)) ↔ ((𝐢 ∩ 𝑉) = βˆ… ∧ π‘Œ:π‘‰βŸΆπΎ)))
17 fveq2 6839 . . . . . 6 (𝑑 = 𝑇 β†’ (mAxβ€˜π‘‘) = (mAxβ€˜π‘‡))
18 ismfs.a . . . . . 6 𝐴 = (mAxβ€˜π‘‡)
1917, 18eqtr4di 2795 . . . . 5 (𝑑 = 𝑇 β†’ (mAxβ€˜π‘‘) = 𝐴)
20 fveq2 6839 . . . . . 6 (𝑑 = 𝑇 β†’ (mStatβ€˜π‘‘) = (mStatβ€˜π‘‡))
21 ismfs.s . . . . . 6 𝑆 = (mStatβ€˜π‘‡)
2220, 21eqtr4di 2795 . . . . 5 (𝑑 = 𝑇 β†’ (mStatβ€˜π‘‘) = 𝑆)
2319, 22sseq12d 3975 . . . 4 (𝑑 = 𝑇 β†’ ((mAxβ€˜π‘‘) βŠ† (mStatβ€˜π‘‘) ↔ 𝐴 βŠ† 𝑆))
24 fveq2 6839 . . . . . 6 (𝑑 = 𝑇 β†’ (mVTβ€˜π‘‘) = (mVTβ€˜π‘‡))
25 ismfs.f . . . . . 6 𝐹 = (mVTβ€˜π‘‡)
2624, 25eqtr4di 2795 . . . . 5 (𝑑 = 𝑇 β†’ (mVTβ€˜π‘‘) = 𝐹)
2711cnveqd 5829 . . . . . . . 8 (𝑑 = 𝑇 β†’ β—‘(mTypeβ€˜π‘‘) = β—‘π‘Œ)
2827imaeq1d 6010 . . . . . . 7 (𝑑 = 𝑇 β†’ (β—‘(mTypeβ€˜π‘‘) β€œ {𝑣}) = (β—‘π‘Œ β€œ {𝑣}))
2928eleq1d 2822 . . . . . 6 (𝑑 = 𝑇 β†’ ((β—‘(mTypeβ€˜π‘‘) β€œ {𝑣}) ∈ Fin ↔ (β—‘π‘Œ β€œ {𝑣}) ∈ Fin))
3029notbid 317 . . . . 5 (𝑑 = 𝑇 β†’ (Β¬ (β—‘(mTypeβ€˜π‘‘) β€œ {𝑣}) ∈ Fin ↔ Β¬ (β—‘π‘Œ β€œ {𝑣}) ∈ Fin))
3126, 30raleqbidv 3317 . . . 4 (𝑑 = 𝑇 β†’ (βˆ€π‘£ ∈ (mVTβ€˜π‘‘) Β¬ (β—‘(mTypeβ€˜π‘‘) β€œ {𝑣}) ∈ Fin ↔ βˆ€π‘£ ∈ 𝐹 Β¬ (β—‘π‘Œ β€œ {𝑣}) ∈ Fin))
3223, 31anbi12d 631 . . 3 (𝑑 = 𝑇 β†’ (((mAxβ€˜π‘‘) βŠ† (mStatβ€˜π‘‘) ∧ βˆ€π‘£ ∈ (mVTβ€˜π‘‘) Β¬ (β—‘(mTypeβ€˜π‘‘) β€œ {𝑣}) ∈ Fin) ↔ (𝐴 βŠ† 𝑆 ∧ βˆ€π‘£ ∈ 𝐹 Β¬ (β—‘π‘Œ β€œ {𝑣}) ∈ Fin)))
3316, 32anbi12d 631 . 2 (𝑑 = 𝑇 β†’ (((((mCNβ€˜π‘‘) ∩ (mVRβ€˜π‘‘)) = βˆ… ∧ (mTypeβ€˜π‘‘):(mVRβ€˜π‘‘)⟢(mTCβ€˜π‘‘)) ∧ ((mAxβ€˜π‘‘) βŠ† (mStatβ€˜π‘‘) ∧ βˆ€π‘£ ∈ (mVTβ€˜π‘‘) Β¬ (β—‘(mTypeβ€˜π‘‘) β€œ {𝑣}) ∈ Fin)) ↔ (((𝐢 ∩ 𝑉) = βˆ… ∧ π‘Œ:π‘‰βŸΆπΎ) ∧ (𝐴 βŠ† 𝑆 ∧ βˆ€π‘£ ∈ 𝐹 Β¬ (β—‘π‘Œ β€œ {𝑣}) ∈ Fin))))
34 df-mfs 33902 . 2 mFS = {𝑑 ∣ ((((mCNβ€˜π‘‘) ∩ (mVRβ€˜π‘‘)) = βˆ… ∧ (mTypeβ€˜π‘‘):(mVRβ€˜π‘‘)⟢(mTCβ€˜π‘‘)) ∧ ((mAxβ€˜π‘‘) βŠ† (mStatβ€˜π‘‘) ∧ βˆ€π‘£ ∈ (mVTβ€˜π‘‘) Β¬ (β—‘(mTypeβ€˜π‘‘) β€œ {𝑣}) ∈ Fin))}
3533, 34elab2g 3630 1 (𝑇 ∈ π‘Š β†’ (𝑇 ∈ mFS ↔ (((𝐢 ∩ 𝑉) = βˆ… ∧ π‘Œ:π‘‰βŸΆπΎ) ∧ (𝐴 βŠ† 𝑆 ∧ βˆ€π‘£ ∈ 𝐹 Β¬ (β—‘π‘Œ β€œ {𝑣}) ∈ Fin))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3062   ∩ cin 3907   βŠ† wss 3908  βˆ…c0 4280  {csn 4584  β—‘ccnv 5630   β€œ cima 5634  βŸΆwf 6489  β€˜cfv 6493  Fincfn 8841  mCNcmcn 33866  mVRcmvar 33867  mTypecmty 33868  mVTcmvt 33869  mTCcmtc 33870  mAxcmax 33871  mStatcmsta 33881  mFScmfs 33882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rab 3406  df-v 3445  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-br 5104  df-opab 5166  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-fv 6501  df-mfs 33902
This theorem is referenced by:  mfsdisj  33956  mtyf2  33957  maxsta  33960  mvtinf  33961
  Copyright terms: Public domain W3C validator