Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismfs Structured version   Visualization version   GIF version

Theorem ismfs 35585
Description: A formal system is a tuple ⟨mCN, mVR, mType, mVT, mTC, mAx⟩ such that: mCN and mVR are disjoint; mType is a function from mVR to mVT; mVT is a subset of mTC; mAx is a set of statements; and for each variable typecode, there are infinitely many variables of that type. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
ismfs.c 𝐶 = (mCN‘𝑇)
ismfs.v 𝑉 = (mVR‘𝑇)
ismfs.y 𝑌 = (mType‘𝑇)
ismfs.f 𝐹 = (mVT‘𝑇)
ismfs.k 𝐾 = (mTC‘𝑇)
ismfs.a 𝐴 = (mAx‘𝑇)
ismfs.s 𝑆 = (mStat‘𝑇)
Assertion
Ref Expression
ismfs (𝑇𝑊 → (𝑇 ∈ mFS ↔ (((𝐶𝑉) = ∅ ∧ 𝑌:𝑉𝐾) ∧ (𝐴𝑆 ∧ ∀𝑣𝐹 ¬ (𝑌 “ {𝑣}) ∈ Fin))))
Distinct variable groups:   𝑣,𝐹   𝑣,𝑇
Allowed substitution hints:   𝐴(𝑣)   𝐶(𝑣)   𝑆(𝑣)   𝐾(𝑣)   𝑉(𝑣)   𝑊(𝑣)   𝑌(𝑣)

Proof of Theorem ismfs
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6817 . . . . . . 7 (𝑡 = 𝑇 → (mCN‘𝑡) = (mCN‘𝑇))
2 ismfs.c . . . . . . 7 𝐶 = (mCN‘𝑇)
31, 2eqtr4di 2784 . . . . . 6 (𝑡 = 𝑇 → (mCN‘𝑡) = 𝐶)
4 fveq2 6817 . . . . . . 7 (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇))
5 ismfs.v . . . . . . 7 𝑉 = (mVR‘𝑇)
64, 5eqtr4di 2784 . . . . . 6 (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉)
73, 6ineq12d 4166 . . . . 5 (𝑡 = 𝑇 → ((mCN‘𝑡) ∩ (mVR‘𝑡)) = (𝐶𝑉))
87eqeq1d 2733 . . . 4 (𝑡 = 𝑇 → (((mCN‘𝑡) ∩ (mVR‘𝑡)) = ∅ ↔ (𝐶𝑉) = ∅))
9 fveq2 6817 . . . . . 6 (𝑡 = 𝑇 → (mType‘𝑡) = (mType‘𝑇))
10 ismfs.y . . . . . 6 𝑌 = (mType‘𝑇)
119, 10eqtr4di 2784 . . . . 5 (𝑡 = 𝑇 → (mType‘𝑡) = 𝑌)
12 fveq2 6817 . . . . . 6 (𝑡 = 𝑇 → (mTC‘𝑡) = (mTC‘𝑇))
13 ismfs.k . . . . . 6 𝐾 = (mTC‘𝑇)
1412, 13eqtr4di 2784 . . . . 5 (𝑡 = 𝑇 → (mTC‘𝑡) = 𝐾)
1511, 6, 14feq123d 6635 . . . 4 (𝑡 = 𝑇 → ((mType‘𝑡):(mVR‘𝑡)⟶(mTC‘𝑡) ↔ 𝑌:𝑉𝐾))
168, 15anbi12d 632 . . 3 (𝑡 = 𝑇 → ((((mCN‘𝑡) ∩ (mVR‘𝑡)) = ∅ ∧ (mType‘𝑡):(mVR‘𝑡)⟶(mTC‘𝑡)) ↔ ((𝐶𝑉) = ∅ ∧ 𝑌:𝑉𝐾)))
17 fveq2 6817 . . . . . 6 (𝑡 = 𝑇 → (mAx‘𝑡) = (mAx‘𝑇))
18 ismfs.a . . . . . 6 𝐴 = (mAx‘𝑇)
1917, 18eqtr4di 2784 . . . . 5 (𝑡 = 𝑇 → (mAx‘𝑡) = 𝐴)
20 fveq2 6817 . . . . . 6 (𝑡 = 𝑇 → (mStat‘𝑡) = (mStat‘𝑇))
21 ismfs.s . . . . . 6 𝑆 = (mStat‘𝑇)
2220, 21eqtr4di 2784 . . . . 5 (𝑡 = 𝑇 → (mStat‘𝑡) = 𝑆)
2319, 22sseq12d 3963 . . . 4 (𝑡 = 𝑇 → ((mAx‘𝑡) ⊆ (mStat‘𝑡) ↔ 𝐴𝑆))
24 fveq2 6817 . . . . . 6 (𝑡 = 𝑇 → (mVT‘𝑡) = (mVT‘𝑇))
25 ismfs.f . . . . . 6 𝐹 = (mVT‘𝑇)
2624, 25eqtr4di 2784 . . . . 5 (𝑡 = 𝑇 → (mVT‘𝑡) = 𝐹)
2711cnveqd 5810 . . . . . . . 8 (𝑡 = 𝑇(mType‘𝑡) = 𝑌)
2827imaeq1d 6003 . . . . . . 7 (𝑡 = 𝑇 → ((mType‘𝑡) “ {𝑣}) = (𝑌 “ {𝑣}))
2928eleq1d 2816 . . . . . 6 (𝑡 = 𝑇 → (((mType‘𝑡) “ {𝑣}) ∈ Fin ↔ (𝑌 “ {𝑣}) ∈ Fin))
3029notbid 318 . . . . 5 (𝑡 = 𝑇 → (¬ ((mType‘𝑡) “ {𝑣}) ∈ Fin ↔ ¬ (𝑌 “ {𝑣}) ∈ Fin))
3126, 30raleqbidv 3312 . . . 4 (𝑡 = 𝑇 → (∀𝑣 ∈ (mVT‘𝑡) ¬ ((mType‘𝑡) “ {𝑣}) ∈ Fin ↔ ∀𝑣𝐹 ¬ (𝑌 “ {𝑣}) ∈ Fin))
3223, 31anbi12d 632 . . 3 (𝑡 = 𝑇 → (((mAx‘𝑡) ⊆ (mStat‘𝑡) ∧ ∀𝑣 ∈ (mVT‘𝑡) ¬ ((mType‘𝑡) “ {𝑣}) ∈ Fin) ↔ (𝐴𝑆 ∧ ∀𝑣𝐹 ¬ (𝑌 “ {𝑣}) ∈ Fin)))
3316, 32anbi12d 632 . 2 (𝑡 = 𝑇 → (((((mCN‘𝑡) ∩ (mVR‘𝑡)) = ∅ ∧ (mType‘𝑡):(mVR‘𝑡)⟶(mTC‘𝑡)) ∧ ((mAx‘𝑡) ⊆ (mStat‘𝑡) ∧ ∀𝑣 ∈ (mVT‘𝑡) ¬ ((mType‘𝑡) “ {𝑣}) ∈ Fin)) ↔ (((𝐶𝑉) = ∅ ∧ 𝑌:𝑉𝐾) ∧ (𝐴𝑆 ∧ ∀𝑣𝐹 ¬ (𝑌 “ {𝑣}) ∈ Fin))))
34 df-mfs 35532 . 2 mFS = {𝑡 ∣ ((((mCN‘𝑡) ∩ (mVR‘𝑡)) = ∅ ∧ (mType‘𝑡):(mVR‘𝑡)⟶(mTC‘𝑡)) ∧ ((mAx‘𝑡) ⊆ (mStat‘𝑡) ∧ ∀𝑣 ∈ (mVT‘𝑡) ¬ ((mType‘𝑡) “ {𝑣}) ∈ Fin))}
3533, 34elab2g 3631 1 (𝑇𝑊 → (𝑇 ∈ mFS ↔ (((𝐶𝑉) = ∅ ∧ 𝑌:𝑉𝐾) ∧ (𝐴𝑆 ∧ ∀𝑣𝐹 ¬ (𝑌 “ {𝑣}) ∈ Fin))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  cin 3896  wss 3897  c0 4278  {csn 4571  ccnv 5610  cima 5614  wf 6472  cfv 6476  Fincfn 8864  mCNcmcn 35496  mVRcmvar 35497  mTypecmty 35498  mVTcmvt 35499  mTCcmtc 35500  mAxcmax 35501  mStatcmsta 35511  mFScmfs 35512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fv 6484  df-mfs 35532
This theorem is referenced by:  mfsdisj  35586  mtyf2  35587  maxsta  35590  mvtinf  35591
  Copyright terms: Public domain W3C validator