Step | Hyp | Ref
| Expression |
1 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑡 = 𝑇 → (mCN‘𝑡) = (mCN‘𝑇)) |
2 | | ismfs.c |
. . . . . . 7
⊢ 𝐶 = (mCN‘𝑇) |
3 | 1, 2 | eqtr4di 2796 |
. . . . . 6
⊢ (𝑡 = 𝑇 → (mCN‘𝑡) = 𝐶) |
4 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇)) |
5 | | ismfs.v |
. . . . . . 7
⊢ 𝑉 = (mVR‘𝑇) |
6 | 4, 5 | eqtr4di 2796 |
. . . . . 6
⊢ (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉) |
7 | 3, 6 | ineq12d 4147 |
. . . . 5
⊢ (𝑡 = 𝑇 → ((mCN‘𝑡) ∩ (mVR‘𝑡)) = (𝐶 ∩ 𝑉)) |
8 | 7 | eqeq1d 2740 |
. . . 4
⊢ (𝑡 = 𝑇 → (((mCN‘𝑡) ∩ (mVR‘𝑡)) = ∅ ↔ (𝐶 ∩ 𝑉) = ∅)) |
9 | | fveq2 6774 |
. . . . . 6
⊢ (𝑡 = 𝑇 → (mType‘𝑡) = (mType‘𝑇)) |
10 | | ismfs.y |
. . . . . 6
⊢ 𝑌 = (mType‘𝑇) |
11 | 9, 10 | eqtr4di 2796 |
. . . . 5
⊢ (𝑡 = 𝑇 → (mType‘𝑡) = 𝑌) |
12 | | fveq2 6774 |
. . . . . 6
⊢ (𝑡 = 𝑇 → (mTC‘𝑡) = (mTC‘𝑇)) |
13 | | ismfs.k |
. . . . . 6
⊢ 𝐾 = (mTC‘𝑇) |
14 | 12, 13 | eqtr4di 2796 |
. . . . 5
⊢ (𝑡 = 𝑇 → (mTC‘𝑡) = 𝐾) |
15 | 11, 6, 14 | feq123d 6589 |
. . . 4
⊢ (𝑡 = 𝑇 → ((mType‘𝑡):(mVR‘𝑡)⟶(mTC‘𝑡) ↔ 𝑌:𝑉⟶𝐾)) |
16 | 8, 15 | anbi12d 631 |
. . 3
⊢ (𝑡 = 𝑇 → ((((mCN‘𝑡) ∩ (mVR‘𝑡)) = ∅ ∧ (mType‘𝑡):(mVR‘𝑡)⟶(mTC‘𝑡)) ↔ ((𝐶 ∩ 𝑉) = ∅ ∧ 𝑌:𝑉⟶𝐾))) |
17 | | fveq2 6774 |
. . . . . 6
⊢ (𝑡 = 𝑇 → (mAx‘𝑡) = (mAx‘𝑇)) |
18 | | ismfs.a |
. . . . . 6
⊢ 𝐴 = (mAx‘𝑇) |
19 | 17, 18 | eqtr4di 2796 |
. . . . 5
⊢ (𝑡 = 𝑇 → (mAx‘𝑡) = 𝐴) |
20 | | fveq2 6774 |
. . . . . 6
⊢ (𝑡 = 𝑇 → (mStat‘𝑡) = (mStat‘𝑇)) |
21 | | ismfs.s |
. . . . . 6
⊢ 𝑆 = (mStat‘𝑇) |
22 | 20, 21 | eqtr4di 2796 |
. . . . 5
⊢ (𝑡 = 𝑇 → (mStat‘𝑡) = 𝑆) |
23 | 19, 22 | sseq12d 3954 |
. . . 4
⊢ (𝑡 = 𝑇 → ((mAx‘𝑡) ⊆ (mStat‘𝑡) ↔ 𝐴 ⊆ 𝑆)) |
24 | | fveq2 6774 |
. . . . . 6
⊢ (𝑡 = 𝑇 → (mVT‘𝑡) = (mVT‘𝑇)) |
25 | | ismfs.f |
. . . . . 6
⊢ 𝐹 = (mVT‘𝑇) |
26 | 24, 25 | eqtr4di 2796 |
. . . . 5
⊢ (𝑡 = 𝑇 → (mVT‘𝑡) = 𝐹) |
27 | 11 | cnveqd 5784 |
. . . . . . . 8
⊢ (𝑡 = 𝑇 → ◡(mType‘𝑡) = ◡𝑌) |
28 | 27 | imaeq1d 5968 |
. . . . . . 7
⊢ (𝑡 = 𝑇 → (◡(mType‘𝑡) “ {𝑣}) = (◡𝑌 “ {𝑣})) |
29 | 28 | eleq1d 2823 |
. . . . . 6
⊢ (𝑡 = 𝑇 → ((◡(mType‘𝑡) “ {𝑣}) ∈ Fin ↔ (◡𝑌 “ {𝑣}) ∈ Fin)) |
30 | 29 | notbid 318 |
. . . . 5
⊢ (𝑡 = 𝑇 → (¬ (◡(mType‘𝑡) “ {𝑣}) ∈ Fin ↔ ¬ (◡𝑌 “ {𝑣}) ∈ Fin)) |
31 | 26, 30 | raleqbidv 3336 |
. . . 4
⊢ (𝑡 = 𝑇 → (∀𝑣 ∈ (mVT‘𝑡) ¬ (◡(mType‘𝑡) “ {𝑣}) ∈ Fin ↔ ∀𝑣 ∈ 𝐹 ¬ (◡𝑌 “ {𝑣}) ∈ Fin)) |
32 | 23, 31 | anbi12d 631 |
. . 3
⊢ (𝑡 = 𝑇 → (((mAx‘𝑡) ⊆ (mStat‘𝑡) ∧ ∀𝑣 ∈ (mVT‘𝑡) ¬ (◡(mType‘𝑡) “ {𝑣}) ∈ Fin) ↔ (𝐴 ⊆ 𝑆 ∧ ∀𝑣 ∈ 𝐹 ¬ (◡𝑌 “ {𝑣}) ∈ Fin))) |
33 | 16, 32 | anbi12d 631 |
. 2
⊢ (𝑡 = 𝑇 → (((((mCN‘𝑡) ∩ (mVR‘𝑡)) = ∅ ∧ (mType‘𝑡):(mVR‘𝑡)⟶(mTC‘𝑡)) ∧ ((mAx‘𝑡) ⊆ (mStat‘𝑡) ∧ ∀𝑣 ∈ (mVT‘𝑡) ¬ (◡(mType‘𝑡) “ {𝑣}) ∈ Fin)) ↔ (((𝐶 ∩ 𝑉) = ∅ ∧ 𝑌:𝑉⟶𝐾) ∧ (𝐴 ⊆ 𝑆 ∧ ∀𝑣 ∈ 𝐹 ¬ (◡𝑌 “ {𝑣}) ∈ Fin)))) |
34 | | df-mfs 33458 |
. 2
⊢ mFS =
{𝑡 ∣
((((mCN‘𝑡) ∩
(mVR‘𝑡)) = ∅
∧ (mType‘𝑡):(mVR‘𝑡)⟶(mTC‘𝑡)) ∧ ((mAx‘𝑡) ⊆ (mStat‘𝑡) ∧ ∀𝑣 ∈ (mVT‘𝑡) ¬ (◡(mType‘𝑡) “ {𝑣}) ∈ Fin))} |
35 | 33, 34 | elab2g 3611 |
1
⊢ (𝑇 ∈ 𝑊 → (𝑇 ∈ mFS ↔ (((𝐶 ∩ 𝑉) = ∅ ∧ 𝑌:𝑉⟶𝐾) ∧ (𝐴 ⊆ 𝑆 ∧ ∀𝑣 ∈ 𝐹 ¬ (◡𝑌 “ {𝑣}) ∈ Fin)))) |