Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismfs Structured version   Visualization version   GIF version

Theorem ismfs 35509
Description: A formal system is a tuple ⟨mCN, mVR, mType, mVT, mTC, mAx⟩ such that: mCN and mVR are disjoint; mType is a function from mVR to mVT; mVT is a subset of mTC; mAx is a set of statements; and for each variable typecode, there are infinitely many variables of that type. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
ismfs.c 𝐶 = (mCN‘𝑇)
ismfs.v 𝑉 = (mVR‘𝑇)
ismfs.y 𝑌 = (mType‘𝑇)
ismfs.f 𝐹 = (mVT‘𝑇)
ismfs.k 𝐾 = (mTC‘𝑇)
ismfs.a 𝐴 = (mAx‘𝑇)
ismfs.s 𝑆 = (mStat‘𝑇)
Assertion
Ref Expression
ismfs (𝑇𝑊 → (𝑇 ∈ mFS ↔ (((𝐶𝑉) = ∅ ∧ 𝑌:𝑉𝐾) ∧ (𝐴𝑆 ∧ ∀𝑣𝐹 ¬ (𝑌 “ {𝑣}) ∈ Fin))))
Distinct variable groups:   𝑣,𝐹   𝑣,𝑇
Allowed substitution hints:   𝐴(𝑣)   𝐶(𝑣)   𝑆(𝑣)   𝐾(𝑣)   𝑉(𝑣)   𝑊(𝑣)   𝑌(𝑣)

Proof of Theorem ismfs
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6840 . . . . . . 7 (𝑡 = 𝑇 → (mCN‘𝑡) = (mCN‘𝑇))
2 ismfs.c . . . . . . 7 𝐶 = (mCN‘𝑇)
31, 2eqtr4di 2782 . . . . . 6 (𝑡 = 𝑇 → (mCN‘𝑡) = 𝐶)
4 fveq2 6840 . . . . . . 7 (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇))
5 ismfs.v . . . . . . 7 𝑉 = (mVR‘𝑇)
64, 5eqtr4di 2782 . . . . . 6 (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉)
73, 6ineq12d 4180 . . . . 5 (𝑡 = 𝑇 → ((mCN‘𝑡) ∩ (mVR‘𝑡)) = (𝐶𝑉))
87eqeq1d 2731 . . . 4 (𝑡 = 𝑇 → (((mCN‘𝑡) ∩ (mVR‘𝑡)) = ∅ ↔ (𝐶𝑉) = ∅))
9 fveq2 6840 . . . . . 6 (𝑡 = 𝑇 → (mType‘𝑡) = (mType‘𝑇))
10 ismfs.y . . . . . 6 𝑌 = (mType‘𝑇)
119, 10eqtr4di 2782 . . . . 5 (𝑡 = 𝑇 → (mType‘𝑡) = 𝑌)
12 fveq2 6840 . . . . . 6 (𝑡 = 𝑇 → (mTC‘𝑡) = (mTC‘𝑇))
13 ismfs.k . . . . . 6 𝐾 = (mTC‘𝑇)
1412, 13eqtr4di 2782 . . . . 5 (𝑡 = 𝑇 → (mTC‘𝑡) = 𝐾)
1511, 6, 14feq123d 6659 . . . 4 (𝑡 = 𝑇 → ((mType‘𝑡):(mVR‘𝑡)⟶(mTC‘𝑡) ↔ 𝑌:𝑉𝐾))
168, 15anbi12d 632 . . 3 (𝑡 = 𝑇 → ((((mCN‘𝑡) ∩ (mVR‘𝑡)) = ∅ ∧ (mType‘𝑡):(mVR‘𝑡)⟶(mTC‘𝑡)) ↔ ((𝐶𝑉) = ∅ ∧ 𝑌:𝑉𝐾)))
17 fveq2 6840 . . . . . 6 (𝑡 = 𝑇 → (mAx‘𝑡) = (mAx‘𝑇))
18 ismfs.a . . . . . 6 𝐴 = (mAx‘𝑇)
1917, 18eqtr4di 2782 . . . . 5 (𝑡 = 𝑇 → (mAx‘𝑡) = 𝐴)
20 fveq2 6840 . . . . . 6 (𝑡 = 𝑇 → (mStat‘𝑡) = (mStat‘𝑇))
21 ismfs.s . . . . . 6 𝑆 = (mStat‘𝑇)
2220, 21eqtr4di 2782 . . . . 5 (𝑡 = 𝑇 → (mStat‘𝑡) = 𝑆)
2319, 22sseq12d 3977 . . . 4 (𝑡 = 𝑇 → ((mAx‘𝑡) ⊆ (mStat‘𝑡) ↔ 𝐴𝑆))
24 fveq2 6840 . . . . . 6 (𝑡 = 𝑇 → (mVT‘𝑡) = (mVT‘𝑇))
25 ismfs.f . . . . . 6 𝐹 = (mVT‘𝑇)
2624, 25eqtr4di 2782 . . . . 5 (𝑡 = 𝑇 → (mVT‘𝑡) = 𝐹)
2711cnveqd 5829 . . . . . . . 8 (𝑡 = 𝑇(mType‘𝑡) = 𝑌)
2827imaeq1d 6019 . . . . . . 7 (𝑡 = 𝑇 → ((mType‘𝑡) “ {𝑣}) = (𝑌 “ {𝑣}))
2928eleq1d 2813 . . . . . 6 (𝑡 = 𝑇 → (((mType‘𝑡) “ {𝑣}) ∈ Fin ↔ (𝑌 “ {𝑣}) ∈ Fin))
3029notbid 318 . . . . 5 (𝑡 = 𝑇 → (¬ ((mType‘𝑡) “ {𝑣}) ∈ Fin ↔ ¬ (𝑌 “ {𝑣}) ∈ Fin))
3126, 30raleqbidv 3316 . . . 4 (𝑡 = 𝑇 → (∀𝑣 ∈ (mVT‘𝑡) ¬ ((mType‘𝑡) “ {𝑣}) ∈ Fin ↔ ∀𝑣𝐹 ¬ (𝑌 “ {𝑣}) ∈ Fin))
3223, 31anbi12d 632 . . 3 (𝑡 = 𝑇 → (((mAx‘𝑡) ⊆ (mStat‘𝑡) ∧ ∀𝑣 ∈ (mVT‘𝑡) ¬ ((mType‘𝑡) “ {𝑣}) ∈ Fin) ↔ (𝐴𝑆 ∧ ∀𝑣𝐹 ¬ (𝑌 “ {𝑣}) ∈ Fin)))
3316, 32anbi12d 632 . 2 (𝑡 = 𝑇 → (((((mCN‘𝑡) ∩ (mVR‘𝑡)) = ∅ ∧ (mType‘𝑡):(mVR‘𝑡)⟶(mTC‘𝑡)) ∧ ((mAx‘𝑡) ⊆ (mStat‘𝑡) ∧ ∀𝑣 ∈ (mVT‘𝑡) ¬ ((mType‘𝑡) “ {𝑣}) ∈ Fin)) ↔ (((𝐶𝑉) = ∅ ∧ 𝑌:𝑉𝐾) ∧ (𝐴𝑆 ∧ ∀𝑣𝐹 ¬ (𝑌 “ {𝑣}) ∈ Fin))))
34 df-mfs 35456 . 2 mFS = {𝑡 ∣ ((((mCN‘𝑡) ∩ (mVR‘𝑡)) = ∅ ∧ (mType‘𝑡):(mVR‘𝑡)⟶(mTC‘𝑡)) ∧ ((mAx‘𝑡) ⊆ (mStat‘𝑡) ∧ ∀𝑣 ∈ (mVT‘𝑡) ¬ ((mType‘𝑡) “ {𝑣}) ∈ Fin))}
3533, 34elab2g 3644 1 (𝑇𝑊 → (𝑇 ∈ mFS ↔ (((𝐶𝑉) = ∅ ∧ 𝑌:𝑉𝐾) ∧ (𝐴𝑆 ∧ ∀𝑣𝐹 ¬ (𝑌 “ {𝑣}) ∈ Fin))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  cin 3910  wss 3911  c0 4292  {csn 4585  ccnv 5630  cima 5634  wf 6495  cfv 6499  Fincfn 8895  mCNcmcn 35420  mVRcmvar 35421  mTypecmty 35422  mVTcmvt 35423  mTCcmtc 35424  mAxcmax 35425  mStatcmsta 35435  mFScmfs 35436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-mfs 35456
This theorem is referenced by:  mfsdisj  35510  mtyf2  35511  maxsta  35514  mvtinf  35515
  Copyright terms: Public domain W3C validator