Detailed syntax breakdown of Definition df-mcls
| Step | Hyp | Ref
| Expression |
| 1 | | cmcls 35482 |
. 2
class
mCls |
| 2 | | vt |
. . 3
setvar 𝑡 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vd |
. . . 4
setvar 𝑑 |
| 5 | | vh |
. . . 4
setvar ℎ |
| 6 | 2 | cv 1539 |
. . . . . 6
class 𝑡 |
| 7 | | cmdv 35473 |
. . . . . 6
class
mDV |
| 8 | 6, 7 | cfv 6561 |
. . . . 5
class
(mDV‘𝑡) |
| 9 | 8 | cpw 4600 |
. . . 4
class 𝒫
(mDV‘𝑡) |
| 10 | | cmex 35472 |
. . . . . 6
class
mEx |
| 11 | 6, 10 | cfv 6561 |
. . . . 5
class
(mEx‘𝑡) |
| 12 | 11 | cpw 4600 |
. . . 4
class 𝒫
(mEx‘𝑡) |
| 13 | 5 | cv 1539 |
. . . . . . . . 9
class ℎ |
| 14 | | cmvh 35477 |
. . . . . . . . . . 11
class
mVH |
| 15 | 6, 14 | cfv 6561 |
. . . . . . . . . 10
class
(mVH‘𝑡) |
| 16 | 15 | crn 5686 |
. . . . . . . . 9
class ran
(mVH‘𝑡) |
| 17 | 13, 16 | cun 3949 |
. . . . . . . 8
class (ℎ ∪ ran (mVH‘𝑡)) |
| 18 | | vc |
. . . . . . . . 9
setvar 𝑐 |
| 19 | 18 | cv 1539 |
. . . . . . . 8
class 𝑐 |
| 20 | 17, 19 | wss 3951 |
. . . . . . 7
wff (ℎ ∪ ran (mVH‘𝑡)) ⊆ 𝑐 |
| 21 | | vm |
. . . . . . . . . . . . . 14
setvar 𝑚 |
| 22 | 21 | cv 1539 |
. . . . . . . . . . . . 13
class 𝑚 |
| 23 | | vo |
. . . . . . . . . . . . . 14
setvar 𝑜 |
| 24 | 23 | cv 1539 |
. . . . . . . . . . . . 13
class 𝑜 |
| 25 | | vp |
. . . . . . . . . . . . . 14
setvar 𝑝 |
| 26 | 25 | cv 1539 |
. . . . . . . . . . . . 13
class 𝑝 |
| 27 | 22, 24, 26 | cotp 4634 |
. . . . . . . . . . . 12
class
〈𝑚, 𝑜, 𝑝〉 |
| 28 | | cmax 35470 |
. . . . . . . . . . . . 13
class
mAx |
| 29 | 6, 28 | cfv 6561 |
. . . . . . . . . . . 12
class
(mAx‘𝑡) |
| 30 | 27, 29 | wcel 2108 |
. . . . . . . . . . 11
wff 〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) |
| 31 | | vs |
. . . . . . . . . . . . . . . . 17
setvar 𝑠 |
| 32 | 31 | cv 1539 |
. . . . . . . . . . . . . . . 16
class 𝑠 |
| 33 | 24, 16 | cun 3949 |
. . . . . . . . . . . . . . . 16
class (𝑜 ∪ ran (mVH‘𝑡)) |
| 34 | 32, 33 | cima 5688 |
. . . . . . . . . . . . . . 15
class (𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) |
| 35 | 34, 19 | wss 3951 |
. . . . . . . . . . . . . 14
wff (𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 |
| 36 | | vx |
. . . . . . . . . . . . . . . . . . 19
setvar 𝑥 |
| 37 | 36 | cv 1539 |
. . . . . . . . . . . . . . . . . 18
class 𝑥 |
| 38 | | vy |
. . . . . . . . . . . . . . . . . . 19
setvar 𝑦 |
| 39 | 38 | cv 1539 |
. . . . . . . . . . . . . . . . . 18
class 𝑦 |
| 40 | 37, 39, 22 | wbr 5143 |
. . . . . . . . . . . . . . . . 17
wff 𝑥𝑚𝑦 |
| 41 | 37, 15 | cfv 6561 |
. . . . . . . . . . . . . . . . . . . . 21
class
((mVH‘𝑡)‘𝑥) |
| 42 | 41, 32 | cfv 6561 |
. . . . . . . . . . . . . . . . . . . 20
class (𝑠‘((mVH‘𝑡)‘𝑥)) |
| 43 | | cmvrs 35474 |
. . . . . . . . . . . . . . . . . . . . 21
class
mVars |
| 44 | 6, 43 | cfv 6561 |
. . . . . . . . . . . . . . . . . . . 20
class
(mVars‘𝑡) |
| 45 | 42, 44 | cfv 6561 |
. . . . . . . . . . . . . . . . . . 19
class
((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) |
| 46 | 39, 15 | cfv 6561 |
. . . . . . . . . . . . . . . . . . . . 21
class
((mVH‘𝑡)‘𝑦) |
| 47 | 46, 32 | cfv 6561 |
. . . . . . . . . . . . . . . . . . . 20
class (𝑠‘((mVH‘𝑡)‘𝑦)) |
| 48 | 47, 44 | cfv 6561 |
. . . . . . . . . . . . . . . . . . 19
class
((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦))) |
| 49 | 45, 48 | cxp 5683 |
. . . . . . . . . . . . . . . . . 18
class
(((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) |
| 50 | 4 | cv 1539 |
. . . . . . . . . . . . . . . . . 18
class 𝑑 |
| 51 | 49, 50 | wss 3951 |
. . . . . . . . . . . . . . . . 17
wff
(((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑 |
| 52 | 40, 51 | wi 4 |
. . . . . . . . . . . . . . . 16
wff (𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) |
| 53 | 52, 38 | wal 1538 |
. . . . . . . . . . . . . . 15
wff
∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) |
| 54 | 53, 36 | wal 1538 |
. . . . . . . . . . . . . 14
wff
∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) |
| 55 | 35, 54 | wa 395 |
. . . . . . . . . . . . 13
wff ((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) |
| 56 | 26, 32 | cfv 6561 |
. . . . . . . . . . . . . 14
class (𝑠‘𝑝) |
| 57 | 56, 19 | wcel 2108 |
. . . . . . . . . . . . 13
wff (𝑠‘𝑝) ∈ 𝑐 |
| 58 | 55, 57 | wi 4 |
. . . . . . . . . . . 12
wff (((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐) |
| 59 | | cmsub 35476 |
. . . . . . . . . . . . . 14
class
mSubst |
| 60 | 6, 59 | cfv 6561 |
. . . . . . . . . . . . 13
class
(mSubst‘𝑡) |
| 61 | 60 | crn 5686 |
. . . . . . . . . . . 12
class ran
(mSubst‘𝑡) |
| 62 | 58, 31, 61 | wral 3061 |
. . . . . . . . . . 11
wff
∀𝑠 ∈ ran
(mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐) |
| 63 | 30, 62 | wi 4 |
. . . . . . . . . 10
wff
(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)) |
| 64 | 63, 25 | wal 1538 |
. . . . . . . . 9
wff
∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)) |
| 65 | 64, 23 | wal 1538 |
. . . . . . . 8
wff
∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)) |
| 66 | 65, 21 | wal 1538 |
. . . . . . 7
wff
∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)) |
| 67 | 20, 66 | wa 395 |
. . . . . 6
wff ((ℎ ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐))) |
| 68 | 67, 18 | cab 2714 |
. . . . 5
class {𝑐 ∣ ((ℎ ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)))} |
| 69 | 68 | cint 4946 |
. . . 4
class ∩ {𝑐
∣ ((ℎ ∪ ran
(mVH‘𝑡)) ⊆
𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)))} |
| 70 | 4, 5, 9, 12, 69 | cmpo 7433 |
. . 3
class (𝑑 ∈ 𝒫
(mDV‘𝑡), ℎ ∈ 𝒫
(mEx‘𝑡) ↦ ∩ {𝑐
∣ ((ℎ ∪ ran
(mVH‘𝑡)) ⊆
𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)))}) |
| 71 | 2, 3, 70 | cmpt 5225 |
. 2
class (𝑡 ∈ V ↦ (𝑑 ∈ 𝒫
(mDV‘𝑡), ℎ ∈ 𝒫
(mEx‘𝑡) ↦ ∩ {𝑐
∣ ((ℎ ∪ ran
(mVH‘𝑡)) ⊆
𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)))})) |
| 72 | 1, 71 | wceq 1540 |
1
wff mCls =
(𝑡 ∈ V ↦ (𝑑 ∈ 𝒫
(mDV‘𝑡), ℎ ∈ 𝒫
(mEx‘𝑡) ↦ ∩ {𝑐
∣ ((ℎ ∪ ran
(mVH‘𝑡)) ⊆
𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)))})) |