Detailed syntax breakdown of Definition df-mgmhm
| Step | Hyp | Ref
| Expression |
| 1 | | cmgmhm 18703 |
. 2
class
MgmHom |
| 2 | | vs |
. . 3
setvar 𝑠 |
| 3 | | vt |
. . 3
setvar 𝑡 |
| 4 | | cmgm 18651 |
. . 3
class
Mgm |
| 5 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
| 6 | 5 | cv 1539 |
. . . . . . . . 9
class 𝑥 |
| 7 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
| 8 | 7 | cv 1539 |
. . . . . . . . 9
class 𝑦 |
| 9 | 2 | cv 1539 |
. . . . . . . . . 10
class 𝑠 |
| 10 | | cplusg 17297 |
. . . . . . . . . 10
class
+g |
| 11 | 9, 10 | cfv 6561 |
. . . . . . . . 9
class
(+g‘𝑠) |
| 12 | 6, 8, 11 | co 7431 |
. . . . . . . 8
class (𝑥(+g‘𝑠)𝑦) |
| 13 | | vf |
. . . . . . . . 9
setvar 𝑓 |
| 14 | 13 | cv 1539 |
. . . . . . . 8
class 𝑓 |
| 15 | 12, 14 | cfv 6561 |
. . . . . . 7
class (𝑓‘(𝑥(+g‘𝑠)𝑦)) |
| 16 | 6, 14 | cfv 6561 |
. . . . . . . 8
class (𝑓‘𝑥) |
| 17 | 8, 14 | cfv 6561 |
. . . . . . . 8
class (𝑓‘𝑦) |
| 18 | 3 | cv 1539 |
. . . . . . . . 9
class 𝑡 |
| 19 | 18, 10 | cfv 6561 |
. . . . . . . 8
class
(+g‘𝑡) |
| 20 | 16, 17, 19 | co 7431 |
. . . . . . 7
class ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) |
| 21 | 15, 20 | wceq 1540 |
. . . . . 6
wff (𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) |
| 22 | | cbs 17247 |
. . . . . . 7
class
Base |
| 23 | 9, 22 | cfv 6561 |
. . . . . 6
class
(Base‘𝑠) |
| 24 | 21, 7, 23 | wral 3061 |
. . . . 5
wff
∀𝑦 ∈
(Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) |
| 25 | 24, 5, 23 | wral 3061 |
. . . 4
wff
∀𝑥 ∈
(Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) |
| 26 | 18, 22 | cfv 6561 |
. . . . 5
class
(Base‘𝑡) |
| 27 | | cmap 8866 |
. . . . 5
class
↑m |
| 28 | 26, 23, 27 | co 7431 |
. . . 4
class
((Base‘𝑡)
↑m (Base‘𝑠)) |
| 29 | 25, 13, 28 | crab 3436 |
. . 3
class {𝑓 ∈ ((Base‘𝑡) ↑m
(Base‘𝑠)) ∣
∀𝑥 ∈
(Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦))} |
| 30 | 2, 3, 4, 4, 29 | cmpo 7433 |
. 2
class (𝑠 ∈ Mgm, 𝑡 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑡) ↑m (Base‘𝑠)) ∣ ∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦))}) |
| 31 | 1, 30 | wceq 1540 |
1
wff MgmHom =
(𝑠 ∈ Mgm, 𝑡 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑡) ↑m
(Base‘𝑠)) ∣
∀𝑥 ∈
(Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦))}) |