| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mgmhmrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure of a magma homomorphism. (Contributed by AV, 24-Feb-2020.) |
| Ref | Expression |
|---|---|
| mgmhmrcl | ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mgmhm 18675 | . 2 ⊢ MgmHom = (𝑠 ∈ Mgm, 𝑡 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑡) ↑m (Base‘𝑠)) ∣ ∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦))}) | |
| 2 | 1 | elmpocl 7656 | 1 ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 {crab 3419 ‘cfv 6541 (class class class)co 7413 ↑m cmap 8848 Basecbs 17230 +gcplusg 17274 Mgmcmgm 18621 MgmHom cmgmhm 18673 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-xp 5671 df-dm 5675 df-iota 6494 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-mgmhm 18675 |
| This theorem is referenced by: ismgmhm 18679 mgmhmf1o 18683 resmgmhm 18694 resmgmhm2 18695 resmgmhm2b 18696 mgmhmco 18697 mgmhmima 18698 mgmhmeql 18699 |
| Copyright terms: Public domain | W3C validator |