![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mgmhmrcl | Structured version Visualization version GIF version |
Description: Reverse closure of a magma homomorphism. (Contributed by AV, 24-Feb-2020.) |
Ref | Expression |
---|---|
mgmhmrcl | ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mgmhm 42644 | . 2 ⊢ MgmHom = (𝑠 ∈ Mgm, 𝑡 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑡) ↑𝑚 (Base‘𝑠)) ∣ ∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦))}) | |
2 | 1 | elmpt2cl 7141 | 1 ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∀wral 3117 {crab 3121 ‘cfv 6127 (class class class)co 6910 ↑𝑚 cmap 8127 Basecbs 16229 +gcplusg 16312 Mgmcmgm 17600 MgmHom cmgmhm 42642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-xp 5352 df-dm 5356 df-iota 6090 df-fv 6135 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-mgmhm 42644 |
This theorem is referenced by: ismgmhm 42648 mgmhmf1o 42652 resmgmhm 42663 resmgmhm2 42664 resmgmhm2b 42665 mgmhmco 42666 mgmhmima 42667 mgmhmeql 42668 |
Copyright terms: Public domain | W3C validator |