Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgmhmrcl Structured version   Visualization version   GIF version

Theorem mgmhmrcl 42646
Description: Reverse closure of a magma homomorphism. (Contributed by AV, 24-Feb-2020.)
Assertion
Ref Expression
mgmhmrcl (𝐹 ∈ (𝑆 MgmHom 𝑇) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm))

Proof of Theorem mgmhmrcl
Dummy variables 𝑡 𝑠 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mgmhm 42644 . 2 MgmHom = (𝑠 ∈ Mgm, 𝑡 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑡) ↑𝑚 (Base‘𝑠)) ∣ ∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦))})
21elmpt2cl 7141 1 (𝐹 ∈ (𝑆 MgmHom 𝑇) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wcel 2164  wral 3117  {crab 3121  cfv 6127  (class class class)co 6910  𝑚 cmap 8127  Basecbs 16229  +gcplusg 16312  Mgmcmgm 17600   MgmHom cmgmhm 42642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-xp 5352  df-dm 5356  df-iota 6090  df-fv 6135  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-mgmhm 42644
This theorem is referenced by:  ismgmhm  42648  mgmhmf1o  42652  resmgmhm  42663  resmgmhm2  42664  resmgmhm2b  42665  mgmhmco  42666  mgmhmima  42667  mgmhmeql  42668
  Copyright terms: Public domain W3C validator