Detailed syntax breakdown of Definition df-submgm
| Step | Hyp | Ref
| Expression |
| 1 | | csubmgm 18674 |
. 2
class
SubMgm |
| 2 | | vs |
. . 3
setvar 𝑠 |
| 3 | | cmgm 18621 |
. . 3
class
Mgm |
| 4 | | vx |
. . . . . . . . 9
setvar 𝑥 |
| 5 | 4 | cv 1539 |
. . . . . . . 8
class 𝑥 |
| 6 | | vy |
. . . . . . . . 9
setvar 𝑦 |
| 7 | 6 | cv 1539 |
. . . . . . . 8
class 𝑦 |
| 8 | 2 | cv 1539 |
. . . . . . . . 9
class 𝑠 |
| 9 | | cplusg 17276 |
. . . . . . . . 9
class
+g |
| 10 | 8, 9 | cfv 6536 |
. . . . . . . 8
class
(+g‘𝑠) |
| 11 | 5, 7, 10 | co 7410 |
. . . . . . 7
class (𝑥(+g‘𝑠)𝑦) |
| 12 | | vt |
. . . . . . . 8
setvar 𝑡 |
| 13 | 12 | cv 1539 |
. . . . . . 7
class 𝑡 |
| 14 | 11, 13 | wcel 2109 |
. . . . . 6
wff (𝑥(+g‘𝑠)𝑦) ∈ 𝑡 |
| 15 | 14, 6, 13 | wral 3052 |
. . . . 5
wff
∀𝑦 ∈
𝑡 (𝑥(+g‘𝑠)𝑦) ∈ 𝑡 |
| 16 | 15, 4, 13 | wral 3052 |
. . . 4
wff
∀𝑥 ∈
𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑠)𝑦) ∈ 𝑡 |
| 17 | | cbs 17233 |
. . . . . 6
class
Base |
| 18 | 8, 17 | cfv 6536 |
. . . . 5
class
(Base‘𝑠) |
| 19 | 18 | cpw 4580 |
. . . 4
class 𝒫
(Base‘𝑠) |
| 20 | 16, 12, 19 | crab 3420 |
. . 3
class {𝑡 ∈ 𝒫
(Base‘𝑠) ∣
∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑠)𝑦) ∈ 𝑡} |
| 21 | 2, 3, 20 | cmpt 5206 |
. 2
class (𝑠 ∈ Mgm ↦ {𝑡 ∈ 𝒫
(Base‘𝑠) ∣
∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑠)𝑦) ∈ 𝑡}) |
| 22 | 1, 21 | wceq 1540 |
1
wff SubMgm =
(𝑠 ∈ Mgm ↦
{𝑡 ∈ 𝒫
(Base‘𝑠) ∣
∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑠)𝑦) ∈ 𝑡}) |