Detailed syntax breakdown of Definition df-submgm
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | csubmgm 18705 | . 2
class
SubMgm | 
| 2 |  | vs | . . 3
setvar 𝑠 | 
| 3 |  | cmgm 18652 | . . 3
class
Mgm | 
| 4 |  | vx | . . . . . . . . 9
setvar 𝑥 | 
| 5 | 4 | cv 1538 | . . . . . . . 8
class 𝑥 | 
| 6 |  | vy | . . . . . . . . 9
setvar 𝑦 | 
| 7 | 6 | cv 1538 | . . . . . . . 8
class 𝑦 | 
| 8 | 2 | cv 1538 | . . . . . . . . 9
class 𝑠 | 
| 9 |  | cplusg 17298 | . . . . . . . . 9
class
+g | 
| 10 | 8, 9 | cfv 6560 | . . . . . . . 8
class
(+g‘𝑠) | 
| 11 | 5, 7, 10 | co 7432 | . . . . . . 7
class (𝑥(+g‘𝑠)𝑦) | 
| 12 |  | vt | . . . . . . . 8
setvar 𝑡 | 
| 13 | 12 | cv 1538 | . . . . . . 7
class 𝑡 | 
| 14 | 11, 13 | wcel 2107 | . . . . . 6
wff (𝑥(+g‘𝑠)𝑦) ∈ 𝑡 | 
| 15 | 14, 6, 13 | wral 3060 | . . . . 5
wff
∀𝑦 ∈
𝑡 (𝑥(+g‘𝑠)𝑦) ∈ 𝑡 | 
| 16 | 15, 4, 13 | wral 3060 | . . . 4
wff
∀𝑥 ∈
𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑠)𝑦) ∈ 𝑡 | 
| 17 |  | cbs 17248 | . . . . . 6
class
Base | 
| 18 | 8, 17 | cfv 6560 | . . . . 5
class
(Base‘𝑠) | 
| 19 | 18 | cpw 4599 | . . . 4
class 𝒫
(Base‘𝑠) | 
| 20 | 16, 12, 19 | crab 3435 | . . 3
class {𝑡 ∈ 𝒫
(Base‘𝑠) ∣
∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑠)𝑦) ∈ 𝑡} | 
| 21 | 2, 3, 20 | cmpt 5224 | . 2
class (𝑠 ∈ Mgm ↦ {𝑡 ∈ 𝒫
(Base‘𝑠) ∣
∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑠)𝑦) ∈ 𝑡}) | 
| 22 | 1, 21 | wceq 1539 | 1
wff SubMgm =
(𝑠 ∈ Mgm ↦
{𝑡 ∈ 𝒫
(Base‘𝑠) ∣
∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑠)𝑦) ∈ 𝑡}) |