MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismgmhm Structured version   Visualization version   GIF version

Theorem ismgmhm 18570
Description: Property of a magma homomorphism. (Contributed by AV, 25-Feb-2020.)
Hypotheses
Ref Expression
ismgmhm.b 𝐵 = (Base‘𝑆)
ismgmhm.c 𝐶 = (Base‘𝑇)
ismgmhm.p + = (+g𝑆)
ismgmhm.q = (+g𝑇)
Assertion
Ref Expression
ismgmhm (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   + (𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem ismgmhm
Dummy variables 𝑓 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmhmrcl 18568 . 2 (𝐹 ∈ (𝑆 MgmHom 𝑇) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm))
2 fveq2 6822 . . . . . . . 8 (𝑡 = 𝑇 → (Base‘𝑡) = (Base‘𝑇))
3 ismgmhm.c . . . . . . . 8 𝐶 = (Base‘𝑇)
42, 3eqtr4di 2782 . . . . . . 7 (𝑡 = 𝑇 → (Base‘𝑡) = 𝐶)
5 fveq2 6822 . . . . . . . 8 (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆))
6 ismgmhm.b . . . . . . . 8 𝐵 = (Base‘𝑆)
75, 6eqtr4di 2782 . . . . . . 7 (𝑠 = 𝑆 → (Base‘𝑠) = 𝐵)
84, 7oveqan12rd 7369 . . . . . 6 ((𝑠 = 𝑆𝑡 = 𝑇) → ((Base‘𝑡) ↑m (Base‘𝑠)) = (𝐶m 𝐵))
97adantr 480 . . . . . . 7 ((𝑠 = 𝑆𝑡 = 𝑇) → (Base‘𝑠) = 𝐵)
10 fveq2 6822 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (+g𝑠) = (+g𝑆))
11 ismgmhm.p . . . . . . . . . . . 12 + = (+g𝑆)
1210, 11eqtr4di 2782 . . . . . . . . . . 11 (𝑠 = 𝑆 → (+g𝑠) = + )
1312oveqd 7366 . . . . . . . . . 10 (𝑠 = 𝑆 → (𝑥(+g𝑠)𝑦) = (𝑥 + 𝑦))
1413fveq2d 6826 . . . . . . . . 9 (𝑠 = 𝑆 → (𝑓‘(𝑥(+g𝑠)𝑦)) = (𝑓‘(𝑥 + 𝑦)))
15 fveq2 6822 . . . . . . . . . . 11 (𝑡 = 𝑇 → (+g𝑡) = (+g𝑇))
16 ismgmhm.q . . . . . . . . . . 11 = (+g𝑇)
1715, 16eqtr4di 2782 . . . . . . . . . 10 (𝑡 = 𝑇 → (+g𝑡) = )
1817oveqd 7366 . . . . . . . . 9 (𝑡 = 𝑇 → ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) = ((𝑓𝑥) (𝑓𝑦)))
1914, 18eqeqan12d 2743 . . . . . . . 8 ((𝑠 = 𝑆𝑡 = 𝑇) → ((𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ↔ (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦))))
209, 19raleqbidv 3309 . . . . . . 7 ((𝑠 = 𝑆𝑡 = 𝑇) → (∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ↔ ∀𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦))))
219, 20raleqbidv 3309 . . . . . 6 ((𝑠 = 𝑆𝑡 = 𝑇) → (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦))))
228, 21rabeqbidv 3413 . . . . 5 ((𝑠 = 𝑆𝑡 = 𝑇) → {𝑓 ∈ ((Base‘𝑡) ↑m (Base‘𝑠)) ∣ ∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦))} = {𝑓 ∈ (𝐶m 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦))})
23 df-mgmhm 18566 . . . . 5 MgmHom = (𝑠 ∈ Mgm, 𝑡 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑡) ↑m (Base‘𝑠)) ∣ ∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦))})
24 ovex 7382 . . . . . 6 (𝐶m 𝐵) ∈ V
2524rabex 5278 . . . . 5 {𝑓 ∈ (𝐶m 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦))} ∈ V
2622, 23, 25ovmpoa 7504 . . . 4 ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) → (𝑆 MgmHom 𝑇) = {𝑓 ∈ (𝐶m 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦))})
2726eleq2d 2814 . . 3 ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) → (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ 𝐹 ∈ {𝑓 ∈ (𝐶m 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦))}))
28 fveq1 6821 . . . . . . 7 (𝑓 = 𝐹 → (𝑓‘(𝑥 + 𝑦)) = (𝐹‘(𝑥 + 𝑦)))
29 fveq1 6821 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
30 fveq1 6821 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
3129, 30oveq12d 7367 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓𝑥) (𝑓𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
3228, 31eqeq12d 2745 . . . . . 6 (𝑓 = 𝐹 → ((𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ↔ (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))))
33322ralbidv 3193 . . . . 5 (𝑓 = 𝐹 → (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))))
3433elrab 3648 . . . 4 (𝐹 ∈ {𝑓 ∈ (𝐶m 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦))} ↔ (𝐹 ∈ (𝐶m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))))
353fvexi 6836 . . . . . 6 𝐶 ∈ V
366fvexi 6836 . . . . . 6 𝐵 ∈ V
3735, 36elmap 8798 . . . . 5 (𝐹 ∈ (𝐶m 𝐵) ↔ 𝐹:𝐵𝐶)
3837anbi1i 624 . . . 4 ((𝐹 ∈ (𝐶m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))) ↔ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))))
3934, 38bitri 275 . . 3 (𝐹 ∈ {𝑓 ∈ (𝐶m 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦))} ↔ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))))
4027, 39bitrdi 287 . 2 ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) → (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
411, 40biadanii 821 1 (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3394  wf 6478  cfv 6482  (class class class)co 7349  m cmap 8753  Basecbs 17120  +gcplusg 17161  Mgmcmgm 18512   MgmHom cmgmhm 18564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-map 8755  df-mgmhm 18566
This theorem is referenced by:  mgmhmf  18571  mgmhmpropd  18572  mgmhmlin  18573  mgmhmf1o  18574  idmgmhm  18575  resmgmhm  18585  resmgmhm2  18586  resmgmhm2b  18587  mgmhmco  18588  ismhm0  18664  mhmismgmhm  18665  isrnghmmul  20327  c0mgm  20344  c0snmgmhm  20347
  Copyright terms: Public domain W3C validator