Step | Hyp | Ref
| Expression |
1 | | mgmhmrcl 44768 |
. 2
⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm)) |
2 | | fveq2 6658 |
. . . . . . . 8
⊢ (𝑡 = 𝑇 → (Base‘𝑡) = (Base‘𝑇)) |
3 | | ismgmhm.c |
. . . . . . . 8
⊢ 𝐶 = (Base‘𝑇) |
4 | 2, 3 | eqtr4di 2811 |
. . . . . . 7
⊢ (𝑡 = 𝑇 → (Base‘𝑡) = 𝐶) |
5 | | fveq2 6658 |
. . . . . . . 8
⊢ (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆)) |
6 | | ismgmhm.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑆) |
7 | 5, 6 | eqtr4di 2811 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → (Base‘𝑠) = 𝐵) |
8 | 4, 7 | oveqan12rd 7170 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → ((Base‘𝑡) ↑m (Base‘𝑠)) = (𝐶 ↑m 𝐵)) |
9 | 7 | adantr 484 |
. . . . . . 7
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (Base‘𝑠) = 𝐵) |
10 | | fveq2 6658 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑆 → (+g‘𝑠) = (+g‘𝑆)) |
11 | | ismgmhm.p |
. . . . . . . . . . . 12
⊢ + =
(+g‘𝑆) |
12 | 10, 11 | eqtr4di 2811 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑆 → (+g‘𝑠) = + ) |
13 | 12 | oveqd 7167 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑆 → (𝑥(+g‘𝑠)𝑦) = (𝑥 + 𝑦)) |
14 | 13 | fveq2d 6662 |
. . . . . . . . 9
⊢ (𝑠 = 𝑆 → (𝑓‘(𝑥(+g‘𝑠)𝑦)) = (𝑓‘(𝑥 + 𝑦))) |
15 | | fveq2 6658 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑇 → (+g‘𝑡) = (+g‘𝑇)) |
16 | | ismgmhm.q |
. . . . . . . . . . 11
⊢ ⨣ =
(+g‘𝑇) |
17 | 15, 16 | eqtr4di 2811 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑇 → (+g‘𝑡) = ⨣ ) |
18 | 17 | oveqd 7167 |
. . . . . . . . 9
⊢ (𝑡 = 𝑇 → ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) = ((𝑓‘𝑥) ⨣ (𝑓‘𝑦))) |
19 | 14, 18 | eqeqan12d 2775 |
. . . . . . . 8
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → ((𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ↔ (𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ⨣ (𝑓‘𝑦)))) |
20 | 9, 19 | raleqbidv 3319 |
. . . . . . 7
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ↔ ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ⨣ (𝑓‘𝑦)))) |
21 | 9, 20 | raleqbidv 3319 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ⨣ (𝑓‘𝑦)))) |
22 | 8, 21 | rabeqbidv 3398 |
. . . . 5
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → {𝑓 ∈ ((Base‘𝑡) ↑m (Base‘𝑠)) ∣ ∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦))} = {𝑓 ∈ (𝐶 ↑m 𝐵) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ⨣ (𝑓‘𝑦))}) |
23 | | df-mgmhm 44766 |
. . . . 5
⊢ MgmHom =
(𝑠 ∈ Mgm, 𝑡 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑡) ↑m
(Base‘𝑠)) ∣
∀𝑥 ∈
(Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦))}) |
24 | | ovex 7183 |
. . . . . 6
⊢ (𝐶 ↑m 𝐵) ∈ V |
25 | 24 | rabex 5202 |
. . . . 5
⊢ {𝑓 ∈ (𝐶 ↑m 𝐵) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ⨣ (𝑓‘𝑦))} ∈ V |
26 | 22, 23, 25 | ovmpoa 7300 |
. . . 4
⊢ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) → (𝑆 MgmHom 𝑇) = {𝑓 ∈ (𝐶 ↑m 𝐵) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ⨣ (𝑓‘𝑦))}) |
27 | 26 | eleq2d 2837 |
. . 3
⊢ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) → (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ 𝐹 ∈ {𝑓 ∈ (𝐶 ↑m 𝐵) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ⨣ (𝑓‘𝑦))})) |
28 | | fveq1 6657 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (𝑓‘(𝑥 + 𝑦)) = (𝐹‘(𝑥 + 𝑦))) |
29 | | fveq1 6657 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) |
30 | | fveq1 6657 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) |
31 | 29, 30 | oveq12d 7168 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥) ⨣ (𝑓‘𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
32 | 28, 31 | eqeq12d 2774 |
. . . . . 6
⊢ (𝑓 = 𝐹 → ((𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ⨣ (𝑓‘𝑦)) ↔ (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)))) |
33 | 32 | 2ralbidv 3128 |
. . . . 5
⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ⨣ (𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)))) |
34 | 33 | elrab 3602 |
. . . 4
⊢ (𝐹 ∈ {𝑓 ∈ (𝐶 ↑m 𝐵) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ⨣ (𝑓‘𝑦))} ↔ (𝐹 ∈ (𝐶 ↑m 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)))) |
35 | 3 | fvexi 6672 |
. . . . . 6
⊢ 𝐶 ∈ V |
36 | 6 | fvexi 6672 |
. . . . . 6
⊢ 𝐵 ∈ V |
37 | 35, 36 | elmap 8453 |
. . . . 5
⊢ (𝐹 ∈ (𝐶 ↑m 𝐵) ↔ 𝐹:𝐵⟶𝐶) |
38 | 37 | anbi1i 626 |
. . . 4
⊢ ((𝐹 ∈ (𝐶 ↑m 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) ↔ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)))) |
39 | 34, 38 | bitri 278 |
. . 3
⊢ (𝐹 ∈ {𝑓 ∈ (𝐶 ↑m 𝐵) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ⨣ (𝑓‘𝑦))} ↔ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)))) |
40 | 27, 39 | bitrdi 290 |
. 2
⊢ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) → (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))))) |
41 | 1, 40 | biadanii 821 |
1
⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))))) |