Home | Metamath
Proof Explorer Theorem List (p. 187 of 460) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-28853) |
Hilbert Space Explorer
(28854-30376) |
Users' Mathboxes
(30377-45962) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | oppgmndb 18601 | Bidirectional form of oppgmnd 18600. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
⊢ 𝑂 = (oppg‘𝑅) ⇒ ⊢ (𝑅 ∈ Mnd ↔ 𝑂 ∈ Mnd) | ||
Theorem | oppgid 18602 | Zero in a monoid is a symmetric notion. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.) |
⊢ 𝑂 = (oppg‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ 0 = (0g‘𝑂) | ||
Theorem | oppggrp 18603 | The opposite of a group is a group. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
⊢ 𝑂 = (oppg‘𝑅) ⇒ ⊢ (𝑅 ∈ Grp → 𝑂 ∈ Grp) | ||
Theorem | oppggrpb 18604 | Bidirectional form of oppggrp 18603. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
⊢ 𝑂 = (oppg‘𝑅) ⇒ ⊢ (𝑅 ∈ Grp ↔ 𝑂 ∈ Grp) | ||
Theorem | oppginv 18605 | Inverses in a group are a symmetric notion. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
⊢ 𝑂 = (oppg‘𝑅) & ⊢ 𝐼 = (invg‘𝑅) ⇒ ⊢ (𝑅 ∈ Grp → 𝐼 = (invg‘𝑂)) | ||
Theorem | invoppggim 18606 | The inverse is an antiautomorphism on any group. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
⊢ 𝑂 = (oppg‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → 𝐼 ∈ (𝐺 GrpIso 𝑂)) | ||
Theorem | oppggic 18607 | Every group is (naturally) isomorphic to its opposite. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
⊢ 𝑂 = (oppg‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → 𝐺 ≃𝑔 𝑂) | ||
Theorem | oppgsubm 18608 | Being a submonoid is a symmetric property. (Contributed by Mario Carneiro, 17-Sep-2015.) |
⊢ 𝑂 = (oppg‘𝐺) ⇒ ⊢ (SubMnd‘𝐺) = (SubMnd‘𝑂) | ||
Theorem | oppgsubg 18609 | Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 17-Sep-2015.) |
⊢ 𝑂 = (oppg‘𝐺) ⇒ ⊢ (SubGrp‘𝐺) = (SubGrp‘𝑂) | ||
Theorem | oppgcntz 18610 | A centralizer in a group is the same as the centralizer in the opposite group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ 𝑂 = (oppg‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ (𝑍‘𝐴) = ((Cntz‘𝑂)‘𝐴) | ||
Theorem | oppgcntr 18611 | The center of a group is the same as the center of the opposite group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ 𝑂 = (oppg‘𝐺) & ⊢ 𝑍 = (Cntr‘𝐺) ⇒ ⊢ 𝑍 = (Cntr‘𝑂) | ||
Theorem | gsumwrev 18612 | A sum in an opposite monoid is the regular sum of a reversed word. (Contributed by Stefan O'Rear, 27-Aug-2015.) (Proof shortened by Mario Carneiro, 28-Feb-2016.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑂 = (oppg‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵) → (𝑂 Σg 𝑊) = (𝑀 Σg (reverse‘𝑊))) | ||
According to Wikipedia ("Symmetric group", 09-Mar-2019,
https://en.wikipedia.org/wiki/symmetric_group) "In abstract algebra, the
symmetric group defined over any set is the group whose elements are all the
bijections from the set to itself, and whose group operation is the composition
of functions." and according to Encyclopedia of Mathematics ("Symmetric group",
09-Mar-2019, https://www.encyclopediaofmath.org/index.php/Symmetric_group)
"The group of all permutations (self-bijections) of a set with the operation of
composition (see Permutation group).". In [Rotman] p. 27 "If X is a nonempty
set, a permutation of X is a function a : X -> X that is a one-to-one
correspondence." and "If X is a nonempty set, the symmetric group on X, denoted
SX, is the group whose elements are the permutations of X and whose
binary operation is composition of functions.". Therefore, we define the
symmetric group on a set 𝐴 as the set of one-to-one onto functions
from 𝐴 to itself under function composition, see df-symg 18614. However, the
set is allowed to be empty, see symgbas0 18635. Hint: The symmetric groups
should not be confused with "symmetry groups" which is a different topic in
group theory.
| ||
Syntax | csymg 18613 | Extend class notation to include the class of symmetric groups. |
class SymGrp | ||
Definition | df-symg 18614* | Define the symmetric group on set 𝑥. We represent the group as the set of one-to-one onto functions from 𝑥 to itself under function composition, and topologize it as a function space assuming the set is discrete. This definition is based on the fact that a symmetric group is a restriction of the monoid of endofunctions. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by AV, 28-Mar-2024.) |
⊢ SymGrp = (𝑥 ∈ V ↦ ((EndoFMnd‘𝑥) ↾s {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥})) | ||
Theorem | symgval 18615* | The value of the symmetric group function at 𝐴. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 28-Mar-2024.) |
⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} ⇒ ⊢ 𝐺 = ((EndoFMnd‘𝐴) ↾s 𝐵) | ||
Theorem | permsetexOLD 18616* | Obsolete version of f1osetex 8469 as of 8-Aug-2024. (Contributed by AV, 30-Mar-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} ∈ V) | ||
Theorem | symgbas 18617* | The base set of the symmetric group. (Contributed by Mario Carneiro, 12-Jan-2015.) (Proof shortened by AV, 29-Mar-2024.) |
⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ 𝐵 = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} | ||
Theorem | symgbasexOLD 18618 | Obsolete as of 8-Aug-2024. 𝐵 ∈ V follows immediatly from fvex 6687. (Contributed by AV, 30-Mar-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐵 ∈ V) | ||
Theorem | elsymgbas2 18619 | Two ways of saying a function is a 1-1-onto mapping of A to itself. (Contributed by Mario Carneiro, 28-Jan-2015.) |
⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ 𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐴)) | ||
Theorem | elsymgbas 18620 | Two ways of saying a function is a 1-1-onto mapping of A to itself. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 28-Jan-2015.) |
⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐹 ∈ 𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐴)) | ||
Theorem | symgbasf1o 18621 | Elements in the symmetric group are 1-1 onto functions. (Contributed by SO, 9-Jul-2018.) |
⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐹 ∈ 𝐵 → 𝐹:𝐴–1-1-onto→𝐴) | ||
Theorem | symgbasf 18622 | A permutation (element of the symmetric group) is a function from a set into itself. (Contributed by AV, 1-Jan-2019.) |
⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐹 ∈ 𝐵 → 𝐹:𝐴⟶𝐴) | ||
Theorem | symgbasmap 18623 | A permutation (element of the symmetric group) is a mapping (or set exponentiation) from a set into itself. (Contributed by AV, 30-Mar-2024.) |
⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐹 ∈ 𝐵 → 𝐹 ∈ (𝐴 ↑m 𝐴)) | ||
Theorem | symghash 18624 | The symmetric group on 𝑛 objects has cardinality 𝑛!. (Contributed by Mario Carneiro, 22-Jan-2015.) |
⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ Fin → (♯‘𝐵) = (!‘(♯‘𝐴))) | ||
Theorem | symgbasfi 18625 | The symmetric group on a finite index set is finite. (Contributed by SO, 9-Jul-2018.) |
⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ Fin → 𝐵 ∈ Fin) | ||
Theorem | symgfv 18626 | The function value of a permutation. (Contributed by AV, 1-Jan-2019.) |
⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐹 ∈ 𝐵 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) ∈ 𝐴) | ||
Theorem | symgfvne 18627 | The function values of a permutation for different arguments are different. (Contributed by AV, 8-Jan-2019.) |
⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐹 ∈ 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑍 → (𝑌 ≠ 𝑋 → (𝐹‘𝑌) ≠ 𝑍))) | ||
Theorem | symgressbas 18628 | The symmetric group on 𝐴 characterized as structure restriction of the monoid of endofunctions on 𝐴 to its base set. (Contributed by AV, 30-Mar-2024.) |
⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑀 = (EndoFMnd‘𝐴) ⇒ ⊢ 𝐺 = (𝑀 ↾s 𝐵) | ||
Theorem | symgplusg 18629* | The group operation of a symmetric group is the function composition. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 28-Jan-2015.) (Proof shortened by AV, 19-Feb-2024.) (Revised by AV, 29-Mar-2024.) (Proof shortened by AV, 14-Aug-2024.) |
⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (𝐴 ↑m 𝐴) & ⊢ + = (+g‘𝐺) ⇒ ⊢ + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) | ||
Theorem | symgov 18630 | The value of the group operation of the symmetric group on 𝐴. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 28-Jan-2015.) (Revised by AV, 30-Mar-2024.) |
⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑋 ∘ 𝑌)) | ||
Theorem | symgcl 18631 | The group operation of the symmetric group on 𝐴 is closed, i.e. a magma. (Contributed by Mario Carneiro, 12-Jan-2015.) (Revised by Mario Carneiro, 28-Jan-2015.) |
⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) | ||
Theorem | idresperm 18632 | The identity function restricted to a set is a permutation of this set. (Contributed by AV, 17-Mar-2019.) |
⊢ 𝐺 = (SymGrp‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ (Base‘𝐺)) | ||
Theorem | symgmov1 18633* | For a permutation of a set, each element of the set replaces an(other) element of the set. (Contributed by AV, 2-Jan-2019.) |
⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) ⇒ ⊢ (𝑄 ∈ 𝑃 → ∀𝑛 ∈ 𝑁 ∃𝑘 ∈ 𝑁 (𝑄‘𝑛) = 𝑘) | ||
Theorem | symgmov2 18634* | For a permutation of a set, each element of the set is replaced by an(other) element of the set. (Contributed by AV, 2-Jan-2019.) |
⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) ⇒ ⊢ (𝑄 ∈ 𝑃 → ∀𝑛 ∈ 𝑁 ∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝑛) | ||
Theorem | symgbas0 18635 | The base set of the symmetric group on the empty set is the singleton containing the empty set. (Contributed by AV, 27-Feb-2019.) |
⊢ (Base‘(SymGrp‘∅)) = {∅} | ||
Theorem | symg1hash 18636 | The symmetric group on a singleton has cardinality 1. (Contributed by AV, 9-Dec-2018.) |
⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐴 = {𝐼} ⇒ ⊢ (𝐼 ∈ 𝑉 → (♯‘𝐵) = 1) | ||
Theorem | symg1bas 18637 | The symmetric group on a singleton is the symmetric group S1 consisting of the identity only. (Contributed by AV, 9-Dec-2018.) |
⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐴 = {𝐼} ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐵 = {{〈𝐼, 𝐼〉}}) | ||
Theorem | symg2hash 18638 | The symmetric group on a (proper) pair has cardinality 2. (Contributed by AV, 9-Dec-2018.) |
⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐴 = {𝐼, 𝐽} ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊 ∧ 𝐼 ≠ 𝐽) → (♯‘𝐵) = 2) | ||
Theorem | symg2bas 18639 | The symmetric group on a pair is the symmetric group S2 consisting of the identity and the transposition. Notice that this statement is valid for proper pairs only. In the case that both elements are identical, i.e., the pairs are actually singletons, this theorem would be about S1, see Theorem symg1bas 18637. (Contributed by AV, 9-Dec-2018.) (Proof shortened by AV, 16-Jun-2022.) |
⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐴 = {𝐼, 𝐽} ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊) → 𝐵 = {{〈𝐼, 𝐼〉, 〈𝐽, 𝐽〉}, {〈𝐼, 𝐽〉, 〈𝐽, 𝐼〉}}) | ||
Theorem | 0symgefmndeq 18640 | The symmetric group on the empty set is identical with the monoid of endofunctions on the empty set. (Contributed by AV, 30-Mar-2024.) |
⊢ (EndoFMnd‘∅) = (SymGrp‘∅) | ||
Theorem | snsymgefmndeq 18641 | The symmetric group on a singleton 𝐴 is identical with the monoid of endofunctions on 𝐴. (Contributed by AV, 31-Mar-2024.) |
⊢ (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴)) | ||
Theorem | symgpssefmnd 18642 | For a set 𝐴 with more than one element, the symmetric group on 𝐴 is a proper subset of the monoid of endofunctions on 𝐴. (Contributed by AV, 31-Mar-2024.) |
⊢ 𝑀 = (EndoFMnd‘𝐴) & ⊢ 𝐺 = (SymGrp‘𝐴) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → (Base‘𝐺) ⊊ (Base‘𝑀)) | ||
Theorem | symgvalstruct 18643* | The value of the symmetric group function at 𝐴 represented as extensible structure with three slots. This corresponds to the former definition of SymGrp. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 31-Mar-2024.) |
⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} & ⊢ 𝑀 = (𝐴 ↑m 𝐴) & ⊢ + = (𝑓 ∈ 𝑀, 𝑔 ∈ 𝑀 ↦ (𝑓 ∘ 𝑔)) & ⊢ 𝐽 = (∏t‘(𝐴 × {𝒫 𝐴})) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉}) | ||
Theorem | symgsubmefmnd 18644 | The symmetric group on a set 𝐴 is a submonoid of the monoid of endofunctions on 𝐴. (Contributed by AV, 18-Feb-2024.) |
⊢ 𝑀 = (EndoFMnd‘𝐴) & ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐵 ∈ (SubMnd‘𝑀)) | ||
Theorem | symgtset 18645 | The topology of the symmetric group on 𝐴. This component is defined on a larger set than the true base - the product topology is defined on the set of all functions, not just bijections - but the definition of TopOpen ensures that it is trimmed down before it gets use. (Contributed by Mario Carneiro, 29-Aug-2015.) (Proof revised by AV, 30-Mar-2024.) |
⊢ 𝐺 = (SymGrp‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∏t‘(𝐴 × {𝒫 𝐴})) = (TopSet‘𝐺)) | ||
Theorem | symggrp 18646 | The symmetric group on a set 𝐴 is a group. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) (Proof shortened by AV, 28-Jan-2024.) |
⊢ 𝐺 = (SymGrp‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Grp) | ||
Theorem | symgid 18647 | The group identity element of the symmetric group on a set 𝐴. (Contributed by Paul Chapman, 25-Jul-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) (Proof shortened by AV, 1-Apr-2024.) |
⊢ 𝐺 = (SymGrp‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) = (0g‘𝐺)) | ||
Theorem | symginv 18648 | The group inverse in the symmetric group corresponds to the functional inverse. (Contributed by Stefan O'Rear, 24-Aug-2015.) (Revised by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ (𝐹 ∈ 𝐵 → (𝑁‘𝐹) = ◡𝐹) | ||
Theorem | symgsubmefmndALT 18649 | The symmetric group on a set 𝐴 is a submonoid of the monoid of endofunctions on 𝐴. Alternate proof based on issubmndb 18086 and not on injsubmefmnd 18178 and sursubmefmnd 18177. (Contributed by AV, 18-Feb-2024.) (Revised by AV, 30-Mar-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑀 = (EndoFMnd‘𝐴) & ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐵 ∈ (SubMnd‘𝑀)) | ||
Theorem | galactghm 18650* | The currying of a group action is a group homomorphism between the group 𝐺 and the symmetric group (SymGrp‘𝑌). (Contributed by FL, 17-May-2010.) (Proof shortened by Mario Carneiro, 13-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = (SymGrp‘𝑌) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥 ⊕ 𝑦))) ⇒ ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) | ||
Theorem | lactghmga 18651* | The converse of galactghm 18650. The uncurrying of a homomorphism into (SymGrp‘𝑌) is a group action. Thus, group actions and group homomorphisms into a symmetric group are essentially equivalent notions. (Contributed by Mario Carneiro, 15-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = (SymGrp‘𝑌) & ⊢ ⊕ = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝐹‘𝑥)‘𝑦)) ⇒ ⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → ⊕ ∈ (𝐺 GrpAct 𝑌)) | ||
Theorem | symgtopn 18652 | The topology of the symmetric group on 𝐴. (Contributed by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐺 = (SymGrp‘𝑋) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝑋 ∈ 𝑉 → ((∏t‘(𝑋 × {𝒫 𝑋})) ↾t 𝐵) = (TopOpen‘𝐺)) | ||
Theorem | symgga 18653* | The symmetric group induces a group action on its base set. (Contributed by Mario Carneiro, 24-Jan-2015.) |
⊢ 𝐺 = (SymGrp‘𝑋) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐹 = (𝑓 ∈ 𝐵, 𝑥 ∈ 𝑋 ↦ (𝑓‘𝑥)) ⇒ ⊢ (𝑋 ∈ 𝑉 → 𝐹 ∈ (𝐺 GrpAct 𝑋)) | ||
Theorem | pgrpsubgsymgbi 18654 | Every permutation group is a subgroup of the corresponding symmetric group. (Contributed by AV, 14-Mar-2019.) |
⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝑃 ∈ (SubGrp‘𝐺) ↔ (𝑃 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑃) ∈ Grp))) | ||
Theorem | pgrpsubgsymg 18655* | Every permutation group is a subgroup of the corresponding symmetric group. (Contributed by AV, 14-Mar-2019.) (Revised by AV, 30-Mar-2024.) |
⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐹 = (Base‘𝑃) ⇒ ⊢ (𝐴 ∈ 𝑉 → ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝐹 ∈ (SubGrp‘𝐺))) | ||
Theorem | idressubgsymg 18656 | The singleton containing only the identity function restricted to a set is a subgroup of the symmetric group of this set. (Contributed by AV, 17-Mar-2019.) |
⊢ 𝐺 = (SymGrp‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → {( I ↾ 𝐴)} ∈ (SubGrp‘𝐺)) | ||
Theorem | idrespermg 18657 | The structure with the singleton containing only the identity function restricted to a set as base set and the function composition as group operation (constructed by (structure) restricting the symmetric group to that singleton) is a permutation group (group consisting of permutations). (Contributed by AV, 17-Mar-2019.) |
⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐸 = (𝐺 ↾s {( I ↾ 𝐴)}) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐸 ∈ Grp ∧ (Base‘𝐸) ⊆ (Base‘𝐺))) | ||
Theorem | cayleylem1 18658* | Lemma for cayley 18660. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐻 = (SymGrp‘𝑋) & ⊢ 𝑆 = (Base‘𝐻) & ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) ⇒ ⊢ (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom 𝐻)) | ||
Theorem | cayleylem2 18659* | Lemma for cayley 18660. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐻 = (SymGrp‘𝑋) & ⊢ 𝑆 = (Base‘𝐻) & ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) ⇒ ⊢ (𝐺 ∈ Grp → 𝐹:𝑋–1-1→𝑆) | ||
Theorem | cayley 18660* | Cayley's Theorem (constructive version): given group 𝐺, 𝐹 is an isomorphism between 𝐺 and the subgroup 𝑆 of the symmetric group 𝐻 on the underlying set 𝑋 of 𝐺. See also Theorem 3.15 in [Rotman] p. 42. (Contributed by Paul Chapman, 3-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = (SymGrp‘𝑋) & ⊢ + = (+g‘𝐺) & ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) & ⊢ 𝑆 = ran 𝐹 ⇒ ⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐻) ∧ 𝐹 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑆)) ∧ 𝐹:𝑋–1-1-onto→𝑆)) | ||
Theorem | cayleyth 18661* | Cayley's Theorem (existence version): every group 𝐺 is isomorphic to a subgroup of the symmetric group on the underlying set of 𝐺. (For any group 𝐺 there exists an isomorphism 𝑓 between 𝐺 and a subgroup ℎ of the symmetric group on the underlying set of 𝐺.) See also Theorem 3.15 in [Rotman] p. 42. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = (SymGrp‘𝑋) ⇒ ⊢ (𝐺 ∈ Grp → ∃𝑠 ∈ (SubGrp‘𝐻)∃𝑓 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑠))𝑓:𝑋–1-1-onto→𝑠) | ||
Theorem | symgfix2 18662* | If a permutation does not move a certain element of a set to a second element, there is a third element which is moved to the second element. (Contributed by AV, 2-Jan-2019.) |
⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) ⇒ ⊢ (𝐿 ∈ 𝑁 → (𝑄 ∈ (𝑃 ∖ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐿}) → ∃𝑘 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑘) = 𝐿)) | ||
Theorem | symgextf 18663* | The extension of a permutation, fixing the additional element, is a function. (Contributed by AV, 6-Jan-2019.) |
⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) ⇒ ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝐸:𝑁⟶𝑁) | ||
Theorem | symgextfv 18664* | The function value of the extension of a permutation, fixing the additional element, for elements in the original domain. (Contributed by AV, 6-Jan-2019.) |
⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) ⇒ ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝑋 ∈ (𝑁 ∖ {𝐾}) → (𝐸‘𝑋) = (𝑍‘𝑋))) | ||
Theorem | symgextfve 18665* | The function value of the extension of a permutation, fixing the additional element, for the additional element. (Contributed by AV, 6-Jan-2019.) |
⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) ⇒ ⊢ (𝐾 ∈ 𝑁 → (𝑋 = 𝐾 → (𝐸‘𝑋) = 𝐾)) | ||
Theorem | symgextf1lem 18666* | Lemma for symgextf1 18667. (Contributed by AV, 6-Jan-2019.) |
⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) ⇒ ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝑋 ∈ (𝑁 ∖ {𝐾}) ∧ 𝑌 ∈ {𝐾}) → (𝐸‘𝑋) ≠ (𝐸‘𝑌))) | ||
Theorem | symgextf1 18667* | The extension of a permutation, fixing the additional element, is a 1-1 function. (Contributed by AV, 6-Jan-2019.) |
⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) ⇒ ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝐸:𝑁–1-1→𝑁) | ||
Theorem | symgextfo 18668* | The extension of a permutation, fixing the additional element, is an onto function. (Contributed by AV, 7-Jan-2019.) |
⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) ⇒ ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝐸:𝑁–onto→𝑁) | ||
Theorem | symgextf1o 18669* | The extension of a permutation, fixing the additional element, is a bijection. (Contributed by AV, 7-Jan-2019.) |
⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) ⇒ ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝐸:𝑁–1-1-onto→𝑁) | ||
Theorem | symgextsymg 18670* | The extension of a permutation is an element of the extended symmetric group. (Contributed by AV, 9-Mar-2019.) |
⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) ⇒ ⊢ ((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝐸 ∈ (Base‘(SymGrp‘𝑁))) | ||
Theorem | symgextres 18671* | The restriction of the extension of a permutation, fixing the additional element, to the original domain. (Contributed by AV, 6-Jan-2019.) |
⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) ⇒ ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝐸 ↾ (𝑁 ∖ {𝐾})) = 𝑍) | ||
Theorem | gsumccatsymgsn 18672 | Homomorphic property of composites of permutations with a singleton. (Contributed by AV, 20-Jan-2019.) |
⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝐺 Σg (𝑊 ++ 〈“𝑍”〉)) = ((𝐺 Σg 𝑊) ∘ 𝑍)) | ||
Theorem | gsmsymgrfixlem1 18673* | Lemma 1 for gsmsymgrfix 18674. (Contributed by AV, 20-Jan-2019.) |
⊢ 𝑆 = (SymGrp‘𝑁) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ (((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (∀𝑖 ∈ (0..^((♯‘𝑊) + 1))(((𝑊 ++ 〈“𝑃”〉)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑊 ++ 〈“𝑃”〉))‘𝐾) = 𝐾)) | ||
Theorem | gsmsymgrfix 18674* | The composition of permutations fixing one element also fixes this element. (Contributed by AV, 20-Jan-2019.) |
⊢ 𝑆 = (SymGrp‘𝑁) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ∧ 𝑊 ∈ Word 𝐵) → (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) | ||
Theorem | fvcosymgeq 18675* | The values of two compositions of permutations are equal if the values of the composed permutations are pairwise equal. (Contributed by AV, 26-Jan-2019.) |
⊢ 𝑆 = (SymGrp‘𝑁) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑍 = (SymGrp‘𝑀) & ⊢ 𝑃 = (Base‘𝑍) & ⊢ 𝐼 = (𝑁 ∩ 𝑀) ⇒ ⊢ ((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) → ((𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛)) → ((𝐹 ∘ 𝐺)‘𝑋) = ((𝐻 ∘ 𝐾)‘𝑋))) | ||
Theorem | gsmsymgreqlem1 18676* | Lemma 1 for gsmsymgreq 18678. (Contributed by AV, 26-Jan-2019.) |
⊢ 𝑆 = (SymGrp‘𝑁) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑍 = (SymGrp‘𝑀) & ⊢ 𝑃 = (Base‘𝑍) & ⊢ 𝐼 = (𝑁 ∩ 𝑀) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽 ∈ 𝐼) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ((∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ∧ (𝐶‘𝐽) = (𝑅‘𝐽)) → ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝐽) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝐽))) | ||
Theorem | gsmsymgreqlem2 18677* | Lemma 2 for gsmsymgreq 18678. (Contributed by AV, 26-Jan-2019.) |
⊢ 𝑆 = (SymGrp‘𝑁) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑍 = (SymGrp‘𝑀) & ⊢ 𝑃 = (Base‘𝑍) & ⊢ 𝐼 = (𝑁 ∩ 𝑀) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ((∀𝑖 ∈ (0..^(♯‘𝑋))∀𝑛 ∈ 𝐼 ((𝑋‘𝑖)‘𝑛) = ((𝑌‘𝑖)‘𝑛) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛)) → (∀𝑖 ∈ (0..^(♯‘(𝑋 ++ 〈“𝐶”〉)))∀𝑛 ∈ 𝐼 (((𝑋 ++ 〈“𝐶”〉)‘𝑖)‘𝑛) = (((𝑌 ++ 〈“𝑅”〉)‘𝑖)‘𝑛) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝑛) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝑛)))) | ||
Theorem | gsmsymgreq 18678* | Two combination of permutations moves an element of the intersection of the base sets of the permutations to the same element if each pair of corresponding permutations moves such an element to the same element. (Contributed by AV, 20-Jan-2019.) |
⊢ 𝑆 = (SymGrp‘𝑁) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑍 = (SymGrp‘𝑀) & ⊢ 𝑃 = (Base‘𝑍) & ⊢ 𝐼 = (𝑁 ∩ 𝑀) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝑊 ∈ Word 𝐵 ∧ 𝑈 ∈ Word 𝑃 ∧ (♯‘𝑊) = (♯‘𝑈))) → (∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ 𝐼 ((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛))) | ||
Theorem | symgfixelq 18679* | A permutation of a set fixing an element of the set. (Contributed by AV, 4-Jan-2019.) |
⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑄 = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} ⇒ ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ 𝑄 ↔ (𝐹:𝑁–1-1-onto→𝑁 ∧ (𝐹‘𝐾) = 𝐾))) | ||
Theorem | symgfixels 18680* | The restriction of a permutation to a set with one element removed is an element of the restricted symmetric group if the restriction is a 1-1 onto function. (Contributed by AV, 4-Jan-2019.) |
⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑄 = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} & ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐷 = (𝑁 ∖ {𝐾}) ⇒ ⊢ (𝐹 ∈ 𝑉 → ((𝐹 ↾ 𝐷) ∈ 𝑆 ↔ (𝐹 ↾ 𝐷):𝐷–1-1-onto→𝐷)) | ||
Theorem | symgfixelsi 18681* | The restriction of a permutation fixing an element to the set with this element removed is an element of the restricted symmetric group. (Contributed by AV, 4-Jan-2019.) |
⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑄 = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} & ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐷 = (𝑁 ∖ {𝐾}) ⇒ ⊢ ((𝐾 ∈ 𝑁 ∧ 𝐹 ∈ 𝑄) → (𝐹 ↾ 𝐷) ∈ 𝑆) | ||
Theorem | symgfixf 18682* | The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is a function. (Contributed by AV, 4-Jan-2019.) |
⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑄 = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} & ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐻 = (𝑞 ∈ 𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾}))) ⇒ ⊢ (𝐾 ∈ 𝑁 → 𝐻:𝑄⟶𝑆) | ||
Theorem | symgfixf1 18683* | The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is a 1-1 function. (Contributed by AV, 4-Jan-2019.) |
⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑄 = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} & ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐻 = (𝑞 ∈ 𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾}))) ⇒ ⊢ (𝐾 ∈ 𝑁 → 𝐻:𝑄–1-1→𝑆) | ||
Theorem | symgfixfolem1 18684* | Lemma 1 for symgfixfo 18685. (Contributed by AV, 7-Jan-2019.) |
⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑄 = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} & ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐻 = (𝑞 ∈ 𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾}))) & ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) ⇒ ⊢ ((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝐸 ∈ 𝑄) | ||
Theorem | symgfixfo 18685* | The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is an onto function. (Contributed by AV, 7-Jan-2019.) |
⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑄 = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} & ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐻 = (𝑞 ∈ 𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾}))) ⇒ ⊢ ((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → 𝐻:𝑄–onto→𝑆) | ||
Theorem | symgfixf1o 18686* | The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is a bijection. (Contributed by AV, 7-Jan-2019.) |
⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑄 = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} & ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) & ⊢ 𝐻 = (𝑞 ∈ 𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾}))) ⇒ ⊢ ((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → 𝐻:𝑄–1-1-onto→𝑆) | ||
Transpositions are special cases of "cycles" as defined in [Rotman] p. 28: "Let
i1 , i2 , ... , ir be distinct integers
between 1 and n. If α in Sn fixes the other integers and
α(i1) = i2, α(i2) = i3,
..., α(ir-1 ) = ir, α(ir) =
i1, then α is an r-cycle. We also say that α is a
cycle of length r." and in [Rotman] p. 31: "A 2-cycle is also called
transposition.".
| ||
Syntax | cpmtr 18687 | Syntax for the transposition generator function. |
class pmTrsp | ||
Definition | df-pmtr 18688* | Define a function that generates the transpositions on a set. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
⊢ pmTrsp = (𝑑 ∈ V ↦ (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ 𝑑 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)))) | ||
Theorem | f1omvdmvd 18689 | A permutation of any class moves a point which is moved to a different point which is moved. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝑋 ∈ dom (𝐹 ∖ I )) → (𝐹‘𝑋) ∈ (dom (𝐹 ∖ I ) ∖ {𝑋})) | ||
Theorem | f1omvdcnv 18690 | A permutation and its inverse move the same points. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
⊢ (𝐹:𝐴–1-1-onto→𝐴 → dom (◡𝐹 ∖ I ) = dom (𝐹 ∖ I )) | ||
Theorem | mvdco 18691 | Composing two permutations moves at most the union of the points. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
⊢ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ (dom (𝐹 ∖ I ) ∪ dom (𝐺 ∖ I )) | ||
Theorem | f1omvdconj 18692 | Conjugation of a permutation takes the image of the moved subclass. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
⊢ ((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → dom (((𝐺 ∘ 𝐹) ∘ ◡𝐺) ∖ I ) = (𝐺 “ dom (𝐹 ∖ I ))) | ||
Theorem | f1otrspeq 18693 | A transposition is characterized by the points it moves. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
⊢ (((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom (𝐺 ∖ I ) = dom (𝐹 ∖ I ))) → 𝐹 = 𝐺) | ||
Theorem | f1omvdco2 18694 | If exactly one of two permutations is limited to a set of points, then the composition will not be. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴 ∧ (dom (𝐹 ∖ I ) ⊆ 𝑋 ⊻ dom (𝐺 ∖ I ) ⊆ 𝑋)) → ¬ dom ((𝐹 ∘ 𝐺) ∖ I ) ⊆ 𝑋) | ||
Theorem | f1omvdco3 18695 | If a point is moved by exactly one of two permutations, then it will be moved by their composite. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴 ∧ (𝑋 ∈ dom (𝐹 ∖ I ) ⊻ 𝑋 ∈ dom (𝐺 ∖ I ))) → 𝑋 ∈ dom ((𝐹 ∘ 𝐺) ∖ I )) | ||
Theorem | pmtrfval 18696* | The function generating transpositions on a set. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
⊢ 𝑇 = (pmTrsp‘𝐷) ⇒ ⊢ (𝐷 ∈ 𝑉 → 𝑇 = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)))) | ||
Theorem | pmtrval 18697* | A generated transposition, expressed in a symmetric form. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
⊢ 𝑇 = (pmTrsp‘𝐷) ⇒ ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃) = (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧))) | ||
Theorem | pmtrfv 18698 | General value of mapping a point under a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
⊢ 𝑇 = (pmTrsp‘𝐷) ⇒ ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → ((𝑇‘𝑃)‘𝑍) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) | ||
Theorem | pmtrprfv 18699 | In a transposition of two given points, each maps to the other. (Contributed by Stefan O'Rear, 25-Aug-2015.) |
⊢ 𝑇 = (pmTrsp‘𝐷) ⇒ ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → ((𝑇‘{𝑋, 𝑌})‘𝑋) = 𝑌) | ||
Theorem | pmtrprfv3 18700 | In a transposition of two given points, all other points are mapped to themselves. (Contributed by AV, 17-Mar-2019.) |
⊢ 𝑇 = (pmTrsp‘𝐷) ⇒ ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷) ∧ (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍)) → ((𝑇‘{𝑋, 𝑌})‘𝑍) = 𝑍) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |