| Metamath
Proof Explorer Theorem List (p. 187 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30937) |
(30938-32460) |
(32461-49324) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | acsinfd 18601 | In an algebraic closure system, if 𝑆 and 𝑇 have the same closure and 𝑆 is infinite independent, then 𝑇 is infinite. This follows from applying unirnffid 9387 to the map given in acsmap2d 18600. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → 𝑆 ∈ 𝐼) & ⊢ (𝜑 → 𝑇 ⊆ 𝑋) & ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) & ⊢ (𝜑 → ¬ 𝑆 ∈ Fin) ⇒ ⊢ (𝜑 → ¬ 𝑇 ∈ Fin) | ||
| Theorem | acsdomd 18602 | In an algebraic closure system, if 𝑆 and 𝑇 have the same closure and 𝑆 is infinite independent, then 𝑇 dominates 𝑆. This follows from applying acsinfd 18601 and then applying unirnfdomd 10607 to the map given in acsmap2d 18600. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → 𝑆 ∈ 𝐼) & ⊢ (𝜑 → 𝑇 ⊆ 𝑋) & ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) & ⊢ (𝜑 → ¬ 𝑆 ∈ Fin) ⇒ ⊢ (𝜑 → 𝑆 ≼ 𝑇) | ||
| Theorem | acsinfdimd 18603 | In an algebraic closure system, if two independent sets have equal closure and one is infinite, then they are equinumerous. This is proven by using acsdomd 18602 twice with acsinfd 18601. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → 𝑆 ∈ 𝐼) & ⊢ (𝜑 → 𝑇 ∈ 𝐼) & ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) & ⊢ (𝜑 → ¬ 𝑆 ∈ Fin) ⇒ ⊢ (𝜑 → 𝑆 ≈ 𝑇) | ||
| Theorem | acsexdimd 18604* | In an algebraic closure system whose closure operator has the exchange property, if two independent sets have equal closure, they are equinumerous. See mreexfidimd 17693 for the finite case and acsinfdimd 18603 for the infinite case. This is a special case of Theorem 4.2.2 in [FaureFrolicher] p. 87. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) & ⊢ (𝜑 → 𝑆 ∈ 𝐼) & ⊢ (𝜑 → 𝑇 ∈ 𝐼) & ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) ⇒ ⊢ (𝜑 → 𝑆 ≈ 𝑇) | ||
| Theorem | mrelatglb 18605 | Greatest lower bounds in a Moore space are realized by intersections. (Contributed by Stefan O'Rear, 31-Jan-2015.) See mrelatglbALT 48885 for an alternate proof. |
| ⊢ 𝐼 = (toInc‘𝐶) & ⊢ 𝐺 = (glb‘𝐼) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → (𝐺‘𝑈) = ∩ 𝑈) | ||
| Theorem | mrelatglb0 18606 | The empty intersection in a Moore space is realized by the base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| ⊢ 𝐼 = (toInc‘𝐶) & ⊢ 𝐺 = (glb‘𝐼) ⇒ ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝐺‘∅) = 𝑋) | ||
| Theorem | mrelatlub 18607 | Least upper bounds in a Moore space are realized by the closure of the union. (Contributed by Stefan O'Rear, 31-Jan-2015.) See mrelatlubALT 48884 for an alternate proof. |
| ⊢ 𝐼 = (toInc‘𝐶) & ⊢ 𝐹 = (mrCls‘𝐶) & ⊢ 𝐿 = (lub‘𝐼) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶) → (𝐿‘𝑈) = (𝐹‘∪ 𝑈)) | ||
| Theorem | mreclatBAD 18608* | A Moore space is a complete lattice under inclusion. (Contributed by Stefan O'Rear, 31-Jan-2015.) TODO (df-riota 7388 update): Reprove using isclat 18545 instead of the isclatBAD. hypothesis. See commented-out mreclat above. See mreclat 48886 for a good version. |
| ⊢ 𝐼 = (toInc‘𝐶) & ⊢ (𝐼 ∈ CLat ↔ (𝐼 ∈ Poset ∧ ∀𝑥(𝑥 ⊆ (Base‘𝐼) → (((lub‘𝐼)‘𝑥) ∈ (Base‘𝐼) ∧ ((glb‘𝐼)‘𝑥) ∈ (Base‘𝐼))))) ⇒ ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐼 ∈ CLat) | ||
See commented-out notes for lattices as relations. | ||
| Syntax | cps 18609 | Extend class notation with the class of all posets. |
| class PosetRel | ||
| Syntax | ctsr 18610 | Extend class notation with the class of all totally ordered sets. |
| class TosetRel | ||
| Definition | df-ps 18611 | Define the class of all posets (partially ordered sets) with weak ordering (e.g., "less than or equal to" instead of "less than"). A poset is a relation which is transitive, reflexive, and antisymmetric. (Contributed by NM, 11-May-2008.) |
| ⊢ PosetRel = {𝑟 ∣ (Rel 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟 ∧ (𝑟 ∩ ◡𝑟) = ( I ↾ ∪ ∪ 𝑟))} | ||
| Definition | df-tsr 18612 | Define the class of all totally ordered sets. (Contributed by FL, 1-Nov-2009.) |
| ⊢ TosetRel = {𝑟 ∈ PosetRel ∣ (dom 𝑟 × dom 𝑟) ⊆ (𝑟 ∪ ◡𝑟)} | ||
| Theorem | isps 18613 | The predicate "is a poset" i.e. a transitive, reflexive, antisymmetric relation. (Contributed by NM, 11-May-2008.) |
| ⊢ (𝑅 ∈ 𝐴 → (𝑅 ∈ PosetRel ↔ (Rel 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅)))) | ||
| Theorem | psrel 18614 | A poset is a relation. (Contributed by NM, 12-May-2008.) |
| ⊢ (𝐴 ∈ PosetRel → Rel 𝐴) | ||
| Theorem | psref2 18615 | A poset is antisymmetric and reflexive. (Contributed by FL, 3-Aug-2009.) |
| ⊢ (𝑅 ∈ PosetRel → (𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅)) | ||
| Theorem | pstr2 18616 | A poset is transitive. (Contributed by FL, 3-Aug-2009.) |
| ⊢ (𝑅 ∈ PosetRel → (𝑅 ∘ 𝑅) ⊆ 𝑅) | ||
| Theorem | pslem 18617 | Lemma for psref 18619 and others. (Contributed by NM, 12-May-2008.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ (𝑅 ∈ PosetRel → (((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) ∧ (𝐴 ∈ ∪ ∪ 𝑅 → 𝐴𝑅𝐴) ∧ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) → 𝐴 = 𝐵))) | ||
| Theorem | psdmrn 18618 | The domain and range of a poset equal its field. (Contributed by NM, 13-May-2008.) |
| ⊢ (𝑅 ∈ PosetRel → (dom 𝑅 = ∪ ∪ 𝑅 ∧ ran 𝑅 = ∪ ∪ 𝑅)) | ||
| Theorem | psref 18619 | A poset is reflexive. (Contributed by NM, 13-May-2008.) |
| ⊢ 𝑋 = dom 𝑅 ⇒ ⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑋) → 𝐴𝑅𝐴) | ||
| Theorem | psrn 18620 | The range of a poset equals it domain. (Contributed by NM, 7-Jul-2008.) |
| ⊢ 𝑋 = dom 𝑅 ⇒ ⊢ (𝑅 ∈ PosetRel → 𝑋 = ran 𝑅) | ||
| Theorem | psasym 18621 | A poset is antisymmetric. (Contributed by NM, 12-May-2008.) |
| ⊢ ((𝑅 ∈ PosetRel ∧ 𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) → 𝐴 = 𝐵) | ||
| Theorem | pstr 18622 | A poset is transitive. (Contributed by NM, 12-May-2008.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ ((𝑅 ∈ PosetRel ∧ 𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) | ||
| Theorem | cnvps 18623 | The converse of a poset is a poset. In the general case (◡𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel) is not true. See cnvpsb 18624 for a special case where the property holds. (Contributed by FL, 5-Jan-2009.) (Proof shortened by Mario Carneiro, 3-Sep-2015.) |
| ⊢ (𝑅 ∈ PosetRel → ◡𝑅 ∈ PosetRel) | ||
| Theorem | cnvpsb 18624 | The converse of a poset is a poset. (Contributed by FL, 5-Jan-2009.) |
| ⊢ (Rel 𝑅 → (𝑅 ∈ PosetRel ↔ ◡𝑅 ∈ PosetRel)) | ||
| Theorem | psss 18625 | Any subset of a partially ordered set is partially ordered. (Contributed by FL, 24-Jan-2010.) |
| ⊢ (𝑅 ∈ PosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ PosetRel) | ||
| Theorem | psssdm2 18626 | Field of a subposet. (Contributed by Mario Carneiro, 9-Sep-2015.) |
| ⊢ 𝑋 = dom 𝑅 ⇒ ⊢ (𝑅 ∈ PosetRel → dom (𝑅 ∩ (𝐴 × 𝐴)) = (𝑋 ∩ 𝐴)) | ||
| Theorem | psssdm 18627 | Field of a subposet. (Contributed by FL, 19-Sep-2011.) (Revised by Mario Carneiro, 9-Sep-2015.) |
| ⊢ 𝑋 = dom 𝑅 ⇒ ⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ⊆ 𝑋) → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴) | ||
| Theorem | istsr 18628 | The predicate is a toset. (Contributed by FL, 1-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
| ⊢ 𝑋 = dom 𝑅 ⇒ ⊢ (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (𝑋 × 𝑋) ⊆ (𝑅 ∪ ◡𝑅))) | ||
| Theorem | istsr2 18629* | The predicate is a toset. (Contributed by FL, 1-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
| ⊢ 𝑋 = dom 𝑅 ⇒ ⊢ (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥))) | ||
| Theorem | tsrlin 18630 | A toset is a linear order. (Contributed by Mario Carneiro, 9-Sep-2015.) |
| ⊢ 𝑋 = dom 𝑅 ⇒ ⊢ ((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 ∨ 𝐵𝑅𝐴)) | ||
| Theorem | tsrlemax 18631 | Two ways of saying a number is less than or equal to the maximum of two others. (Contributed by Mario Carneiro, 9-Sep-2015.) |
| ⊢ 𝑋 = dom 𝑅 ⇒ ⊢ ((𝑅 ∈ TosetRel ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑅if(𝐵𝑅𝐶, 𝐶, 𝐵) ↔ (𝐴𝑅𝐵 ∨ 𝐴𝑅𝐶))) | ||
| Theorem | tsrps 18632 | A toset is a poset. (Contributed by Mario Carneiro, 9-Sep-2015.) |
| ⊢ (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel) | ||
| Theorem | cnvtsr 18633 | The converse of a toset is a toset. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ (𝑅 ∈ TosetRel → ◡𝑅 ∈ TosetRel ) | ||
| Theorem | tsrss 18634 | Any subset of a totally ordered set is totally ordered. (Contributed by FL, 24-Jan-2010.) (Proof shortened by Mario Carneiro, 21-Nov-2013.) |
| ⊢ (𝑅 ∈ TosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ TosetRel ) | ||
| Theorem | ledm 18635 | The domain of ≤ is ℝ*. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 4-May-2015.) |
| ⊢ ℝ* = dom ≤ | ||
| Theorem | lern 18636 | The range of ≤ is ℝ*. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 3-Sep-2015.) |
| ⊢ ℝ* = ran ≤ | ||
| Theorem | lefld 18637 | The field of the 'less or equal to' relationship on the extended real. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 4-May-2015.) |
| ⊢ ℝ* = ∪ ∪ ≤ | ||
| Theorem | letsr 18638 | The "less than or equal to" relationship on the extended reals is a toset. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 3-Sep-2015.) |
| ⊢ ≤ ∈ TosetRel | ||
| Syntax | cdir 18639 | Extend class notation with the class of directed sets. |
| class DirRel | ||
| Syntax | ctail 18640 | Extend class notation with the tail function for directed sets. |
| class tail | ||
| Definition | df-dir 18641 | Define the class of directed sets (the order relation itself is sometimes called a direction, and a directed set is a set equipped with a direction). (Contributed by Jeff Hankins, 25-Nov-2009.) |
| ⊢ DirRel = {𝑟 ∣ ((Rel 𝑟 ∧ ( I ↾ ∪ ∪ 𝑟) ⊆ 𝑟) ∧ ((𝑟 ∘ 𝑟) ⊆ 𝑟 ∧ (∪ ∪ 𝑟 × ∪ ∪ 𝑟) ⊆ (◡𝑟 ∘ 𝑟)))} | ||
| Definition | df-tail 18642* | Define the tail function for directed sets. (Contributed by Jeff Hankins, 25-Nov-2009.) |
| ⊢ tail = (𝑟 ∈ DirRel ↦ (𝑥 ∈ ∪ ∪ 𝑟 ↦ (𝑟 “ {𝑥}))) | ||
| Theorem | isdir 18643 | A condition for a relation to be a direction. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
| ⊢ 𝐴 = ∪ ∪ 𝑅 ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ 𝐴) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (𝐴 × 𝐴) ⊆ (◡𝑅 ∘ 𝑅))))) | ||
| Theorem | reldir 18644 | A direction is a relation. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
| ⊢ (𝑅 ∈ DirRel → Rel 𝑅) | ||
| Theorem | dirdm 18645 | A direction's domain is equal to its field. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
| ⊢ (𝑅 ∈ DirRel → dom 𝑅 = ∪ ∪ 𝑅) | ||
| Theorem | dirref 18646 | A direction is reflexive. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
| ⊢ 𝑋 = dom 𝑅 ⇒ ⊢ ((𝑅 ∈ DirRel ∧ 𝐴 ∈ 𝑋) → 𝐴𝑅𝐴) | ||
| Theorem | dirtr 18647 | A direction is transitive. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
| ⊢ (((𝑅 ∈ DirRel ∧ 𝐶 ∈ 𝑉) ∧ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) → 𝐴𝑅𝐶) | ||
| Theorem | dirge 18648* | For any two elements of a directed set, there exists a third element greater than or equal to both. Note that this does not say that the two elements have a least upper bound. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
| ⊢ 𝑋 = dom 𝑅 ⇒ ⊢ ((𝑅 ∈ DirRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ∃𝑥 ∈ 𝑋 (𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥)) | ||
| Theorem | tsrdir 18649 | A totally ordered set is a directed set. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
| ⊢ (𝐴 ∈ TosetRel → 𝐴 ∈ DirRel) | ||
According to Wikipedia ("Magma (algebra)", 08-Jan-2020, https://en.wikipedia.org/wiki/magma_(algebra)) "In abstract algebra, a magma [...] is a basic kind of algebraic structure. Specifically, a magma consists of a set equipped with a single binary operation. The binary operation must be closed by definition but no other properties are imposed.". Since the concept of a "binary operation" is used in different variants, these differences are explained in more detail in the following: With df-mpo 7436, binary operations are defined by a rule, and with df-ov 7434, the value of a binary operation applied to two operands can be expressed. In both cases, the two operands can belong to different sets, and the result can be an element of a third set. However, according to Wikipedia "Binary operation", see https://en.wikipedia.org/wiki/Binary_operation 7434 (19-Jan-2020), "... a binary operation on a set 𝑆 is a mapping of the elements of the Cartesian product 𝑆 × 𝑆 to S: 𝑓:𝑆 × 𝑆⟶𝑆. Because the result of performing the operation on a pair of elements of S is again an element of S, the operation is called a closed binary operation on S (or sometimes expressed as having the property of closure).". To distinguish this more restrictive definition (in Wikipedia and most of the literature) from the general case, binary operations mapping the elements of the Cartesian product 𝑆 × 𝑆 are more precisely called internal binary operations. If, in addition, the result is also contained in the set 𝑆, the operation should be called closed internal binary operation. Therefore, a "binary operation on a set 𝑆" according to Wikipedia is a "closed internal binary operation" in a more precise terminology. If the sets are different, the operation is explicitly called external binary operation (see Wikipedia https://en.wikipedia.org/wiki/Binary_operation#External_binary_operations 7434). The definition of magmas (Mgm, see df-mgm 18653) concentrates on the closure property of the associated operation, and poses no additional restrictions on it. In this way, it is most general and flexible. | ||
| Syntax | cplusf 18650 | Extend class notation with group addition as a function. |
| class +𝑓 | ||
| Syntax | cmgm 18651 | Extend class notation with class of all magmas. |
| class Mgm | ||
| Definition | df-plusf 18652* | Define group addition function. Usually we will use +g directly instead of +𝑓, and they have the same behavior in most cases. The main advantage of +𝑓 for any magma is that it is a guaranteed function (mgmplusf 18663), while +g only has closure (mgmcl 18656). (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ +𝑓 = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)𝑦))) | ||
| Definition | df-mgm 18653* | A magma is a set equipped with an everywhere defined internal operation. Definition 1 in [BourbakiAlg1] p. 1, or definition of a groupoid in section I.1 of [Bruck] p. 1. Note: The term "groupoid" is now widely used to refer to other objects: (small) categories all of whose morphisms are invertible, or groups with a partial function replacing the binary operation. Therefore, we will only use the term "magma" for the present notion in set.mm. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) |
| ⊢ Mgm = {𝑔 ∣ [(Base‘𝑔) / 𝑏][(+g‘𝑔) / 𝑜]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑜𝑦) ∈ 𝑏} | ||
| Theorem | ismgm 18654* | The predicate "is a magma". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ (𝑀 ∈ 𝑉 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) | ||
| Theorem | ismgmn0 18655* | The predicate "is a magma" for a structure with a nonempty base set. (Contributed by AV, 29-Jan-2020.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ (𝐴 ∈ 𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) | ||
| Theorem | mgmcl 18656 | Closure of the operation of a magma. (Contributed by FL, 14-Sep-2010.) (Revised by AV, 13-Jan-2020.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⚬ 𝑌) ∈ 𝐵) | ||
| Theorem | isnmgm 18657 | A condition for a structure not to be a magma. (Contributed by AV, 30-Jan-2020.) (Proof shortened by NM, 5-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 ⚬ 𝑌) ∉ 𝐵) → 𝑀 ∉ Mgm) | ||
| Theorem | mgmsscl 18658 | If the base set of a magma is contained in the base set of another magma, and the group operation of the magma is the restriction of the group operation of the other magma to its base set, then the base set of the magma is closed under the group operation of the other magma. Formerly part of proof of grpissubg 19164. (Contributed by AV, 17-Feb-2024.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = (Base‘𝐻) ⇒ ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋(+g‘𝐺)𝑌) ∈ 𝑆) | ||
| Theorem | plusffval 18659* | The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 2-Mar-2024.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ ⨣ = (+𝑓‘𝐺) ⇒ ⊢ ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) | ||
| Theorem | plusfval 18660 | The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ ⨣ = (+𝑓‘𝐺) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⨣ 𝑌) = (𝑋 + 𝑌)) | ||
| Theorem | plusfeq 18661 | If the addition operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ ⨣ = (+𝑓‘𝐺) ⇒ ⊢ ( + Fn (𝐵 × 𝐵) → ⨣ = + ) | ||
| Theorem | plusffn 18662 | The group addition operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ ⨣ = (+𝑓‘𝐺) ⇒ ⊢ ⨣ Fn (𝐵 × 𝐵) | ||
| Theorem | mgmplusf 18663 | The group addition function of a magma is a function into its base set. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revisd by AV, 28-Jan-2020.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ ⨣ = (+𝑓‘𝑀) ⇒ ⊢ (𝑀 ∈ Mgm → ⨣ :(𝐵 × 𝐵)⟶𝐵) | ||
| Theorem | mgmpropd 18664* | If two structures have the same (nonempty) base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a magma iff the other one is. (Contributed by AV, 25-Feb-2020.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → 𝐵 ≠ ∅) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ Mgm ↔ 𝐿 ∈ Mgm)) | ||
| Theorem | ismgmd 18665* | Deduce a magma from its properties. (Contributed by AV, 25-Feb-2020.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → + = (+g‘𝐺)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝐺 ∈ Mgm) | ||
| Theorem | issstrmgm 18666* | Characterize a substructure as submagma by closure properties. (Contributed by AV, 30-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ ((𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵) → (𝐻 ∈ Mgm ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆)) | ||
| Theorem | intopsn 18667 | The internal operation for a set is the trivial operation iff the set is a singleton. Formerly part of proof of ring1zr 20777. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 23-Jan-2020.) |
| ⊢ (( ⚬ :(𝐵 × 𝐵)⟶𝐵 ∧ 𝑍 ∈ 𝐵) → (𝐵 = {𝑍} ↔ ⚬ = {〈〈𝑍, 𝑍〉, 𝑍〉})) | ||
| Theorem | mgmb1mgm1 18668 | The only magma with a base set consisting of one element is the trivial magma (at least if its operation is an internal binary operation). (Contributed by AV, 23-Jan-2020.) (Revised by AV, 7-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ + = {〈〈𝑍, 𝑍〉, 𝑍〉})) | ||
| Theorem | mgm0 18669 | Any set with an empty base set and any group operation is a magma. (Contributed by AV, 28-Aug-2021.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ (Base‘𝑀) = ∅) → 𝑀 ∈ Mgm) | ||
| Theorem | mgm0b 18670 | The structure with an empty base set and any group operation is a magma. (Contributed by AV, 28-Aug-2021.) |
| ⊢ {〈(Base‘ndx), ∅〉, 〈(+g‘ndx), 𝑂〉} ∈ Mgm | ||
| Theorem | mgm1 18671 | The structure with one element and the only closed internal operation for a singleton is a magma. (Contributed by AV, 10-Feb-2020.) |
| ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Mgm) | ||
| Theorem | opifismgm 18672* | A structure with a group addition operation expressed by a conditional operator is a magma if both values of the conditional operator are contained in the base set. (Contributed by AV, 9-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ if(𝜓, 𝐶, 𝐷)) & ⊢ (𝜑 → 𝐵 ≠ ∅) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝐵) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐷 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑀 ∈ Mgm) | ||
According to Wikipedia ("Identity element", 7-Feb-2020, https://en.wikipedia.org/wiki/Identity_element): "In mathematics, an identity element, or neutral element, is a special type of element of a set with respect to a binary operation on that set, which leaves any element of the set unchanged when combined with it.". Or in more detail "... an element e of S is called a left identity if e * a = a for all a in S, and a right identity if a * e = a for all a in S. If e is both a left identity and a right identity, then it is called a two-sided identity, or simply an identity." We concentrate on two-sided identities in the following. The existence of an identity (an identity is unique if it exists, see mgmidmo 18673) is an important property of monoids (see mndid 18757), and therefore also for groups (see grpid 18993), but also for magmas not required to be associative. Magmas with an identity element are called "unital magmas" (see Definition 2 in [BourbakiAlg1] p. 12) or, if the magmas are cancellative, "loops" (see definition in [Bruck] p. 15). In the context of extensible structures, the identity element (of any magma 𝑀) is defined as "group identity element" (0g‘𝑀), see df-0g 17486. Related theorems which are already valid for magmas are provided in the following. | ||
| Theorem | mgmidmo 18673* | A two-sided identity element is unique (if it exists) in any magma. (Contributed by Mario Carneiro, 7-Dec-2014.) (Revised by NM, 17-Jun-2017.) |
| ⊢ ∃*𝑢 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) | ||
| Theorem | grpidval 18674* | The value of the identity element of a group. (Contributed by NM, 20-Aug-2011.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ 0 = (℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))) | ||
| Theorem | grpidpropd 18675* | If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, they have the same identity element. (Contributed by Mario Carneiro, 27-Nov-2014.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (0g‘𝐾) = (0g‘𝐿)) | ||
| Theorem | fn0g 18676 | The group zero extractor is a function. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
| ⊢ 0g Fn V | ||
| Theorem | 0g0 18677 | The identity element function evaluates to the empty set on an empty structure. (Contributed by Stefan O'Rear, 2-Oct-2015.) |
| ⊢ ∅ = (0g‘∅) | ||
| Theorem | ismgmid 18678* | The identity element of a magma, if it exists, belongs to the base set. (Contributed by Mario Carneiro, 27-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → ∃𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) ⇒ ⊢ (𝜑 → ((𝑈 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) ↔ 0 = 𝑈)) | ||
| Theorem | mgmidcl 18679* | The identity element of a magma, if it exists, belongs to the base set. (Contributed by Mario Carneiro, 27-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → ∃𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) ⇒ ⊢ (𝜑 → 0 ∈ 𝐵) | ||
| Theorem | mgmlrid 18680* | The identity element of a magma, if it exists, is a left and right identity. (Contributed by Mario Carneiro, 27-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → ∃𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋)) | ||
| Theorem | ismgmid2 18681* | Show that a given element is the identity element of a magma. (Contributed by Mario Carneiro, 27-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝑈 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑈 + 𝑥) = 𝑥) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 𝑈) = 𝑥) ⇒ ⊢ (𝜑 → 𝑈 = 0 ) | ||
| Theorem | lidrideqd 18682* | If there is a left and right identity element for any binary operation (group operation) +, both identity elements are equal. Generalization of statement in [Lang] p. 3: it is sufficient that "e" is a left identity element and "e`" is a right identity element instead of both being (two-sided) identity elements. (Contributed by AV, 26-Dec-2023.) |
| ⊢ (𝜑 → 𝐿 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝐵) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝐿 + 𝑥) = 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝑥 + 𝑅) = 𝑥) ⇒ ⊢ (𝜑 → 𝐿 = 𝑅) | ||
| Theorem | lidrididd 18683* | If there is a left and right identity element for any binary operation (group operation) +, the left identity element (and therefore also the right identity element according to lidrideqd 18682) is equal to the two-sided identity element. (Contributed by AV, 26-Dec-2023.) |
| ⊢ (𝜑 → 𝐿 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝐵) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝐿 + 𝑥) = 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝑥 + 𝑅) = 𝑥) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝜑 → 𝐿 = 0 ) | ||
| Theorem | grpidd 18684* | Deduce the identity element of a magma from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → + = (+g‘𝐺)) & ⊢ (𝜑 → 0 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = 𝑥) ⇒ ⊢ (𝜑 → 0 = (0g‘𝐺)) | ||
| Theorem | mgmidsssn0 18685* | Property of the set of identities of 𝐺. Either 𝐺 has no identities, and 𝑂 = ∅, or it has one and this identity is unique and identified by the 0g function. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⇒ ⊢ (𝐺 ∈ 𝑉 → 𝑂 ⊆ { 0 }) | ||
| Theorem | grpinvalem 18686* | Lemma for grpinva 18687. (Contributed by NM, 9-Aug-2013.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) & ⊢ (𝜑 → 𝑂 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑂 + 𝑥) = 𝑥) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 𝑂) & ⊢ ((𝜑 ∧ 𝜓) → 𝑋 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝜓) → (𝑋 + 𝑋) = 𝑋) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝑋 = 𝑂) | ||
| Theorem | grpinva 18687* | Deduce right inverse from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013.) (Proof shortened by Mario Carneiro, 6-Jan-2015.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) & ⊢ (𝜑 → 𝑂 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑂 + 𝑥) = 𝑥) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 𝑂) & ⊢ ((𝜑 ∧ 𝜓) → 𝑋 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝜓) → 𝑁 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝜓) → (𝑁 + 𝑋) = 𝑂) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝑋 + 𝑁) = 𝑂) | ||
| Theorem | grprida 18688* | Deduce right identity from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013.) (Proof shortened by Mario Carneiro, 6-Jan-2015.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) & ⊢ (𝜑 → 𝑂 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑂 + 𝑥) = 𝑥) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 𝑂) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 𝑂) = 𝑥) | ||
The symbol Σg is mostly used in the context of abelian groups. Therefore, it is usually called "group sum". It can be defined, however, in arbitrary magmas (then it should be called "iterated sum"). If the magma is not required to be commutative or associative, then the order of the summands and the order in which summations are done become important. If the magma is not unital, then one cannot define a meaningful empty sum. See the comment for df-gsum 17487. | ||
| Theorem | gsumvalx 18689* | Expand out the substitutions in df-gsum 17487. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑂 = {𝑠 ∈ 𝐵 ∣ ∀𝑡 ∈ 𝐵 ((𝑠 + 𝑡) = 𝑡 ∧ (𝑡 + 𝑠) = 𝑡)} & ⊢ (𝜑 → 𝑊 = (◡𝐹 “ (V ∖ 𝑂))) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝑋) & ⊢ (𝜑 → dom 𝐹 = 𝐴) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ 𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))))))) | ||
| Theorem | gsumval 18690* | Expand out the substitutions in df-gsum 17487. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑂 = {𝑠 ∈ 𝐵 ∣ ∀𝑡 ∈ 𝐵 ((𝑠 + 𝑡) = 𝑡 ∧ (𝑡 + 𝑠) = 𝑡)} & ⊢ (𝜑 → 𝑊 = (◡𝐹 “ (V ∖ 𝑂))) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ 𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))))))) | ||
| Theorem | gsumpropd 18691 | The group sum depends only on the base set and additive operation. Note that for entirely unrestricted functions, there can be dependency on out-of-domain values of the operation, so this is somewhat weaker than mndpropd 18772 etc. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Proof shortened by Mario Carneiro, 18-Sep-2015.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) & ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹)) | ||
| Theorem | gsumpropd2lem 18692* | Lemma for gsumpropd2 18693. (Contributed by Thierry Arnoux, 28-Jun-2017.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) & ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g‘𝐺)𝑡) ∈ (Base‘𝐺)) & ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g‘𝐺)𝑡) = (𝑠(+g‘𝐻)𝑡)) & ⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → ran 𝐹 ⊆ (Base‘𝐺)) & ⊢ 𝐴 = (◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)})) & ⊢ 𝐵 = (◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)})) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹)) | ||
| Theorem | gsumpropd2 18693* | A stronger version of gsumpropd 18691, working for magma, where only the closure of the addition operation on a common base is required, see gsummgmpropd 18694. (Contributed by Thierry Arnoux, 28-Jun-2017.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) & ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g‘𝐺)𝑡) ∈ (Base‘𝐺)) & ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g‘𝐺)𝑡) = (𝑠(+g‘𝐻)𝑡)) & ⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → ran 𝐹 ⊆ (Base‘𝐺)) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹)) | ||
| Theorem | gsummgmpropd 18694* | A stronger version of gsumpropd 18691 if at least one of the involved structures is a magma, see gsumpropd2 18693. (Contributed by AV, 31-Jan-2020.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) & ⊢ (𝜑 → 𝐺 ∈ Mgm) & ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g‘𝐺)𝑡) = (𝑠(+g‘𝐻)𝑡)) & ⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → ran 𝐹 ⊆ (Base‘𝐺)) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹)) | ||
| Theorem | gsumress 18695* | The group sum in a substructure is the same as the group sum in the original structure. The only requirement on the substructure is that it contain the identity element; neither 𝐺 nor 𝐻 need be groups. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐻 = (𝐺 ↾s 𝑆) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) & ⊢ (𝜑 → 0 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹)) | ||
| Theorem | gsumval1 18696* | Value of the group sum operation when every element being summed is an identity of 𝐺. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑂) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = 0 ) | ||
| Theorem | gsum0 18697 | Value of the empty group sum. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝐺 Σg ∅) = 0 | ||
| Theorem | gsumval2a 18698* | Value of the group sum operation over a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐹:(𝑀...𝑁)⟶𝐵) & ⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} & ⊢ (𝜑 → ¬ ran 𝐹 ⊆ 𝑂) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁)) | ||
| Theorem | gsumval2 18699 | Value of the group sum operation over a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐹:(𝑀...𝑁)⟶𝐵) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁)) | ||
| Theorem | gsumsplit1r 18700 | Splitting off the rightmost summand of a group sum. This corresponds to the (inductive) definition of a (finite) product in [Lang] p. 4, first formula. (Contributed by AV, 26-Dec-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐹:(𝑀...(𝑁 + 1))⟶𝐵) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) + (𝐹‘(𝑁 + 1)))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |