| Metamath
Proof Explorer Theorem List (p. 187 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | submgmbas 18601 | The base set of a submagma. (Contributed by AV, 26-Feb-2020.) |
| ⊢ 𝐻 = (𝑀 ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ (SubMgm‘𝑀) → 𝑆 = (Base‘𝐻)) | ||
| Theorem | subsubmgm 18602 | A submagma of a submagma is a submagma. (Contributed by AV, 26-Feb-2020.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ (SubMgm‘𝐺) → (𝐴 ∈ (SubMgm‘𝐻) ↔ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴 ⊆ 𝑆))) | ||
| Theorem | resmgmhm 18603 | Restriction of a magma homomorphism to a submagma is a homomorphism. (Contributed by AV, 26-Feb-2020.) |
| ⊢ 𝑈 = (𝑆 ↾s 𝑋) ⇒ ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (𝑈 MgmHom 𝑇)) | ||
| Theorem | resmgmhm2 18604 | One direction of resmgmhm2b 18605. (Contributed by AV, 26-Feb-2020.) |
| ⊢ 𝑈 = (𝑇 ↾s 𝑋) ⇒ ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → 𝐹 ∈ (𝑆 MgmHom 𝑇)) | ||
| Theorem | resmgmhm2b 18605 | Restriction of the codomain of a homomorphism. (Contributed by AV, 26-Feb-2020.) |
| ⊢ 𝑈 = (𝑇 ↾s 𝑋) ⇒ ⊢ ((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ 𝐹 ∈ (𝑆 MgmHom 𝑈))) | ||
| Theorem | mgmhmco 18606 | The composition of magma homomorphisms is a homomorphism. (Contributed by AV, 27-Feb-2020.) |
| ⊢ ((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 MgmHom 𝑈)) | ||
| Theorem | mgmhmima 18607 | The homomorphic image of a submagma is a submagma. (Contributed by AV, 27-Feb-2020.) |
| ⊢ ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → (𝐹 “ 𝑋) ∈ (SubMgm‘𝑁)) | ||
| Theorem | mgmhmeql 18608 | The equalizer of two magma homomorphisms is a submagma. (Contributed by AV, 27-Feb-2020.) |
| ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ (SubMgm‘𝑆)) | ||
| Theorem | submgmacs 18609 | Submagmas are an algebraic closure system. (Contributed by AV, 27-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Mgm → (SubMgm‘𝐺) ∈ (ACS‘𝐵)) | ||
A semigroup (Smgrp, see df-sgrp 18611) is a set together with an associative binary operation (see Wikipedia, Semigroup, 8-Jan-2020, https://en.wikipedia.org/wiki/Semigroup 18611). In other words, a semigroup is an associative magma. The notion of semigroup is a generalization of that of group where the existence of an identity or inverses is not required. | ||
| Syntax | csgrp 18610 | Extend class notation with class of all semigroups. |
| class Smgrp | ||
| Definition | df-sgrp 18611* | A semigroup is a set equipped with an everywhere defined internal operation (so, a magma, see df-mgm 18532), whose operation is associative. Definition in section II.1 of [Bruck] p. 23, or of an "associative magma" in definition 5 of [BourbakiAlg1] p. 4 . (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) |
| ⊢ Smgrp = {𝑔 ∈ Mgm ∣ [(Base‘𝑔) / 𝑏][(+g‘𝑔) / 𝑜]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧))} | ||
| Theorem | issgrp 18612* | The predicate "is a semigroup". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) | ||
| Theorem | issgrpv 18613* | The predicate "is a semigroup" for a structure which is a set. (Contributed by AV, 1-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ (𝑀 ∈ 𝑉 → (𝑀 ∈ Smgrp ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))))) | ||
| Theorem | issgrpn0 18614* | The predicate "is a semigroup" for a structure with a nonempty base set. (Contributed by AV, 1-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ (𝐴 ∈ 𝐵 → (𝑀 ∈ Smgrp ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))))) | ||
| Theorem | isnsgrp 18615 | A condition for a structure not to be a semigroup. (Contributed by AV, 30-Jan-2020.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍)) → 𝑀 ∉ Smgrp)) | ||
| Theorem | sgrpmgm 18616 | A semigroup is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) |
| ⊢ (𝑀 ∈ Smgrp → 𝑀 ∈ Mgm) | ||
| Theorem | sgrpass 18617 | A semigroup operation is associative. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 30-Jan-2020.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ ⚬ = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Smgrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ⚬ 𝑌) ⚬ 𝑍) = (𝑋 ⚬ (𝑌 ⚬ 𝑍))) | ||
| Theorem | sgrpcl 18618 | Closure of the operation of a semigroup. (Contributed by AV, 15-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ ⚬ = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Smgrp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⚬ 𝑌) ∈ 𝐵) | ||
| Theorem | sgrp0 18619 | Any set with an empty base set and any group operation is a semigroup. (Contributed by AV, 28-Aug-2021.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ (Base‘𝑀) = ∅) → 𝑀 ∈ Smgrp) | ||
| Theorem | sgrp0b 18620 | The structure with an empty base set and any group operation is a semigroup. (Contributed by AV, 28-Aug-2021.) |
| ⊢ {〈(Base‘ndx), ∅〉, 〈(+g‘ndx), 𝑂〉} ∈ Smgrp | ||
| Theorem | sgrp1 18621 | The structure with one element and the only closed internal operation for a singleton is a semigroup. (Contributed by AV, 10-Feb-2020.) |
| ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Smgrp) | ||
| Theorem | issgrpd 18622* | Deduce a semigroup from its properties. (Contributed by AV, 13-Feb-2025.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → + = (+g‘𝐺)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐺 ∈ Smgrp) | ||
| Theorem | sgrppropd 18623* | If two structures are sets, have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a semigroup iff the other one is. (Contributed by AV, 15-Feb-2025.) |
| ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝐿 ∈ 𝑊) & ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ Smgrp ↔ 𝐿 ∈ Smgrp)) | ||
| Theorem | prdsplusgsgrpcl 18624 | Structure product pointwise sums are closed when the factors are semigroups. (Contributed by AV, 21-Feb-2025.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅:𝐼⟶Smgrp) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 + 𝐺) ∈ 𝐵) | ||
| Theorem | prdssgrpd 18625 | The product of a family of semigroups is a semigroup. (Contributed by AV, 21-Feb-2025.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝐼⟶Smgrp) ⇒ ⊢ (𝜑 → 𝑌 ∈ Smgrp) | ||
According to Wikipedia ("Monoid", https://en.wikipedia.org/wiki/Monoid, 6-Feb-2020,) "In abstract algebra [...] a monoid is an algebraic structure with a single associative binary operation and an identity element. Monoids are semigroups with identity.". In the following, monoids are defined in the second way (as semigroups with identity), see df-mnd 18627, whereas many authors define magmas in the first way (as algebraic structure with a single associative binary operation and an identity element, i.e. without the need of a definition for/knowledge about semigroups), see ismnd 18629. See, for example, the definition in [Lang] p. 3: "A monoid is a set G, with a law of composition which is associative, and having a unit element". | ||
| Syntax | cmnd 18626 | Extend class notation with class of all monoids. |
| class Mnd | ||
| Definition | df-mnd 18627* | A monoid is a semigroup, which has a two-sided neutral element. Definition 2 in [BourbakiAlg1] p. 12. In other words (according to the definition in [Lang] p. 3), a monoid is a set equipped with an everywhere defined internal operation (see mndcl 18634), whose operation is associative (see mndass 18635) and has a two-sided neutral element (see mndid 18636), see also ismnd 18629. (Contributed by Mario Carneiro, 6-Jan-2015.) (Revised by AV, 1-Feb-2020.) |
| ⊢ Mnd = {𝑔 ∈ Smgrp ∣ [(Base‘𝑔) / 𝑏][(+g‘𝑔) / 𝑝]∃𝑒 ∈ 𝑏 ∀𝑥 ∈ 𝑏 ((𝑒𝑝𝑥) = 𝑥 ∧ (𝑥𝑝𝑒) = 𝑥)} | ||
| Theorem | ismnddef 18628* | The predicate "is a monoid", corresponding 1-to-1 to the definition. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 1-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎))) | ||
| Theorem | ismnd 18629* | The predicate "is a monoid". This is the defining theorem of a monoid by showing that a set is a monoid if and only if it is a set equipped with a closed, everywhere defined internal operation (so, a magma, see mndcl 18634), whose operation is associative (so, a semigroup, see also mndass 18635) and has a two-sided neutral element (see mndid 18636). (Contributed by Mario Carneiro, 6-Jan-2015.) (Revised by AV, 1-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝐺 ∈ Mnd ↔ (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐 ∈ 𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))) ∧ ∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎))) | ||
| Theorem | isnmnd 18630* | A condition for a structure not to be a monoid: every element of the base set is not a left identity for at least one element of the base set. (Contributed by AV, 4-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → 𝑀 ∉ Mnd) | ||
| Theorem | sgrpidmnd 18631* | A semigroup with an identity element which is not the empty set is a monoid. Of course there could be monoids with the empty set as identity element (see, for example, the monoid of the power set of a class under union, pwmnd 18829 and pwmndid 18828), but these cannot be proven to be monoids with this theorem. (Contributed by AV, 29-Jan-2024.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Smgrp ∧ ∃𝑒 ∈ 𝐵 (𝑒 ≠ ∅ ∧ 𝑒 = 0 )) → 𝐺 ∈ Mnd) | ||
| Theorem | mndsgrp 18632 | A monoid is a semigroup. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.) |
| ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp) | ||
| Theorem | mndmgm 18633 | A monoid is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.) |
| ⊢ (𝑀 ∈ Mnd → 𝑀 ∈ Mgm) | ||
| Theorem | mndcl 18634 | Closure of the operation of a monoid. (Contributed by NM, 14-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Proof shortened by AV, 8-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) | ||
| Theorem | mndass 18635 | A monoid operation is associative. (Contributed by NM, 14-Aug-2011.) (Proof shortened by AV, 8-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) | ||
| Theorem | mndid 18636* | A monoid has a two-sided identity element. (Contributed by NM, 16-Aug-2011.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝐺 ∈ Mnd → ∃𝑢 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥)) | ||
| Theorem | mndideu 18637* | The two-sided identity element of a monoid is unique. Lemma 2.2.1(a) of [Herstein] p. 55. (Contributed by Mario Carneiro, 8-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝐺 ∈ Mnd → ∃!𝑢 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥)) | ||
| Theorem | mnd32g 18638 | Commutative/associative law for monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → (𝑌 + 𝑍) = (𝑍 + 𝑌)) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) | ||
| Theorem | mnd12g 18639 | Commutative/associative law for monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) ⇒ ⊢ (𝜑 → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍))) | ||
| Theorem | mnd4g 18640 | Commutative/associative law for commutative monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) & ⊢ (𝜑 → (𝑌 + 𝑍) = (𝑍 + 𝑌)) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊))) | ||
| Theorem | mndidcl 18641 | The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) | ||
| Theorem | mndbn0 18642 | The base set of a monoid is not empty. Statement in [Lang] p. 3. (Contributed by AV, 29-Dec-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Mnd → 𝐵 ≠ ∅) | ||
| Theorem | hashfinmndnn 18643 | A finite monoid has positive integer size. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → (♯‘𝐵) ∈ ℕ) | ||
| Theorem | mndplusf 18644 | The group addition operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 3-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ ⨣ = (+𝑓‘𝐺) ⇒ ⊢ (𝐺 ∈ Mnd → ⨣ :(𝐵 × 𝐵)⟶𝐵) | ||
| Theorem | mndlrid 18645 | A monoid's identity element is a two-sided identity. (Contributed by NM, 18-Aug-2011.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋)) | ||
| Theorem | mndlid 18646 | The identity element of a monoid is a left identity. (Contributed by NM, 18-Aug-2011.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) | ||
| Theorem | mndrid 18647 | The identity element of a monoid is a right identity. (Contributed by NM, 18-Aug-2011.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) | ||
| Theorem | ismndd 18648* | Deduce a monoid from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → + = (+g‘𝐺)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 0 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = 𝑥) ⇒ ⊢ (𝜑 → 𝐺 ∈ Mnd) | ||
| Theorem | mndpfo 18649 | The addition operation of a monoid as a function is an onto function. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 11-Oct-2013.) (Revised by AV, 23-Jan-2020.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ ⨣ = (+𝑓‘𝐺) ⇒ ⊢ (𝐺 ∈ Mnd → ⨣ :(𝐵 × 𝐵)–onto→𝐵) | ||
| Theorem | mndfo 18650 | The addition operation of a monoid is an onto function (assuming it is a function). (Contributed by Mario Carneiro, 11-Oct-2013.) (Proof shortened by AV, 23-Jan-2020.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)–onto→𝐵) | ||
| Theorem | mndpropd 18651* | If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd)) | ||
| Theorem | mndprop 18652 | If two structures have the same group components (properties), one is a monoid iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.) |
| ⊢ (Base‘𝐾) = (Base‘𝐿) & ⊢ (+g‘𝐾) = (+g‘𝐿) ⇒ ⊢ (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd) | ||
| Theorem | issubmnd 18653* | Characterize a submonoid by closure properties. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) → (𝐻 ∈ Mnd ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆)) | ||
| Theorem | ress0g 18654 | 0g is unaffected by restriction. This is a bit more generic than submnd0 18655. (Contributed by Thierry Arnoux, 23-Oct-2017.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 0 = (0g‘𝑆)) | ||
| Theorem | submnd0 18655 | The zero of a submonoid is the same as the zero in the parent monoid. (Note that we must add the condition that the zero of the parent monoid is actually contained in the submonoid, because it is possible to have "subsets that are monoids" which are not submonoids because they have a different identity element. See, for example, smndex1mnd 18802 and smndex1n0mnd 18804). (Contributed by Mario Carneiro, 10-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆)) → 0 = (0g‘𝐻)) | ||
| Theorem | mndinvmod 18656* | Uniqueness of an inverse element in a monoid, if it exists. (Contributed by AV, 20-Jan-2024.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃*𝑤 ∈ 𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 )) | ||
| Theorem | mndpsuppss 18657 | The support of a mapping of a scalar multiplication with a function of scalars is a subset of the support of the function of scalars. (Contributed by AV, 5-Apr-2019.) |
| ⊢ 𝑅 = (Base‘𝑀) ⇒ ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉))) → ((𝐴 ∘f (+g‘𝑀)𝐵) supp (0g‘𝑀)) ⊆ ((𝐴 supp (0g‘𝑀)) ∪ (𝐵 supp (0g‘𝑀)))) | ||
| Theorem | mndpsuppfi 18658 | The support of a mapping of a scalar multiplication with a function of scalars is finite if the support of the function of scalars is finite. (Contributed by AV, 5-Apr-2019.) |
| ⊢ 𝑅 = (Base‘𝑀) ⇒ ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ ((𝐴 supp (0g‘𝑀)) ∈ Fin ∧ (𝐵 supp (0g‘𝑀)) ∈ Fin)) → ((𝐴 ∘f (+g‘𝑀)𝐵) supp (0g‘𝑀)) ∈ Fin) | ||
| Theorem | mndpfsupp 18659 | A mapping of a scalar multiplication with a function of scalars is finitely supported if the function of scalars is finitely supported. (Contributed by AV, 9-Jun-2019.) |
| ⊢ 𝑅 = (Base‘𝑀) ⇒ ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → (𝐴 ∘f (+g‘𝑀)𝐵) finSupp (0g‘𝑀)) | ||
| Theorem | prdsplusgcl 18660 | Structure product pointwise sums are closed when the factors are monoids. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅:𝐼⟶Mnd) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 + 𝐺) ∈ 𝐵) | ||
| Theorem | prdsidlem 18661* | Characterization of identity in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅:𝐼⟶Mnd) & ⊢ 0 = (0g ∘ 𝑅) ⇒ ⊢ (𝜑 → ( 0 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))) | ||
| Theorem | prdsmndd 18662 | The product of a family of monoids is a monoid. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝐼⟶Mnd) ⇒ ⊢ (𝜑 → 𝑌 ∈ Mnd) | ||
| Theorem | prds0g 18663 | The identity in a product of monoids. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝐼⟶Mnd) ⇒ ⊢ (𝜑 → (0g ∘ 𝑅) = (0g‘𝑌)) | ||
| Theorem | pwsmnd 18664 | The structure power of a monoid is a monoid. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) ⇒ ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → 𝑌 ∈ Mnd) | ||
| Theorem | pws0g 18665 | The identity in a structure power of a monoid. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → (𝐼 × { 0 }) = (0g‘𝑌)) | ||
| Theorem | imasmnd2 18666* | The image structure of a monoid is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ + = (+g‘𝑅) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥 + 𝑦) ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝐹‘((𝑥 + 𝑦) + 𝑧)) = (𝐹‘(𝑥 + (𝑦 + 𝑧)))) & ⊢ (𝜑 → 0 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝐹‘( 0 + 𝑥)) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝐹‘(𝑥 + 0 )) = (𝐹‘𝑥)) ⇒ ⊢ (𝜑 → (𝑈 ∈ Mnd ∧ (𝐹‘ 0 ) = (0g‘𝑈))) | ||
| Theorem | imasmnd 18667* | The image structure of a monoid is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ + = (+g‘𝑅) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) & ⊢ (𝜑 → 𝑅 ∈ Mnd) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝜑 → (𝑈 ∈ Mnd ∧ (𝐹‘ 0 ) = (0g‘𝑈))) | ||
| Theorem | imasmndf1 18668 | The image of a monoid under an injection is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ 𝑈 = (𝐹 “s 𝑅) & ⊢ 𝑉 = (Base‘𝑅) ⇒ ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Mnd) → 𝑈 ∈ Mnd) | ||
| Theorem | xpsmnd 18669 | The binary product of monoids is a monoid. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) ⇒ ⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → 𝑇 ∈ Mnd) | ||
| Theorem | xpsmnd0 18670 | The identity element of a binary product of monoids. (Contributed by AV, 25-Feb-2025.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) ⇒ ⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (0g‘𝑇) = 〈(0g‘𝑅), (0g‘𝑆)〉) | ||
| Theorem | mnd1 18671 | The (smallest) structure representing a trivial monoid consists of one element. (Contributed by AV, 28-Apr-2019.) (Proof shortened by AV, 11-Feb-2020.) |
| ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Mnd) | ||
| Theorem | mnd1id 18672 | The singleton element of a trivial monoid is its identity element. (Contributed by AV, 23-Jan-2020.) |
| ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} ⇒ ⊢ (𝐼 ∈ 𝑉 → (0g‘𝑀) = 𝐼) | ||
| Syntax | cmhm 18673 | Hom-set generator class for monoids. |
| class MndHom | ||
| Syntax | csubmnd 18674 | Class function taking a monoid to its lattice of submonoids. |
| class SubMnd | ||
| Definition | df-mhm 18675* | A monoid homomorphism is a function on the base sets which preserves the binary operation and the identity. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| ⊢ MndHom = (𝑠 ∈ Mnd, 𝑡 ∈ Mnd ↦ {𝑓 ∈ ((Base‘𝑡) ↑m (Base‘𝑠)) ∣ (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑠)) = (0g‘𝑡))}) | ||
| Definition | df-submnd 18676* | A submonoid is a subset of a monoid which contains the identity and is closed under the operation. Such subsets are themselves monoids with the same identity. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| ⊢ SubMnd = (𝑠 ∈ Mnd ↦ {𝑡 ∈ 𝒫 (Base‘𝑠) ∣ ((0g‘𝑠) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑠)𝑦) ∈ 𝑡)}) | ||
| Theorem | ismhm 18677* | Property of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐶 = (Base‘𝑇) & ⊢ + = (+g‘𝑆) & ⊢ ⨣ = (+g‘𝑇) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝑌 = (0g‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑌))) | ||
| Theorem | ismhmd 18678* | Deduction version of ismhm 18677. (Contributed by SN, 27-Jul-2024.) |
| ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐶 = (Base‘𝑇) & ⊢ + = (+g‘𝑆) & ⊢ ⨣ = (+g‘𝑇) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝑍 = (0g‘𝑇) & ⊢ (𝜑 → 𝑆 ∈ Mnd) & ⊢ (𝜑 → 𝑇 ∈ Mnd) & ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) & ⊢ (𝜑 → (𝐹‘ 0 ) = 𝑍) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑆 MndHom 𝑇)) | ||
| Theorem | mhmrcl1 18679 | Reverse closure of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑆 ∈ Mnd) | ||
| Theorem | mhmrcl2 18680 | Reverse closure of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑇 ∈ Mnd) | ||
| Theorem | mhmf 18681 | A monoid homomorphism is a function. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐶 = (Base‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:𝐵⟶𝐶) | ||
| Theorem | ismhm0 18682 | Property of a monoid homomorphism, expressed by a magma homomorphism. (Contributed by AV, 17-Apr-2020.) |
| ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐶 = (Base‘𝑇) & ⊢ + = (+g‘𝑆) & ⊢ ⨣ = (+g‘𝑇) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝑌 = (0g‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ (𝐹‘ 0 ) = 𝑌))) | ||
| Theorem | mhmismgmhm 18683 | Each monoid homomorphism is a magma homomorphism. (Contributed by AV, 29-Feb-2020.) |
| ⊢ (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝐹 ∈ (𝑅 MgmHom 𝑆)) | ||
| Theorem | mhmpropd 18684* | Monoid homomorphism depends only on the monoidal attributes of structures. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 7-Nov-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐽)) & ⊢ (𝜑 → 𝐶 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → 𝐶 = (Base‘𝑀)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐽)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) ⇒ ⊢ (𝜑 → (𝐽 MndHom 𝐾) = (𝐿 MndHom 𝑀)) | ||
| Theorem | mhmlin 18685 | A monoid homomorphism commutes with composition. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| ⊢ 𝐵 = (Base‘𝑆) & ⊢ + = (+g‘𝑆) & ⊢ ⨣ = (+g‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌))) | ||
| Theorem | mhm0 18686 | A monoid homomorphism preserves zero. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| ⊢ 0 = (0g‘𝑆) & ⊢ 𝑌 = (0g‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹‘ 0 ) = 𝑌) | ||
| Theorem | idmhm 18687 | The identity homomorphism on a monoid. (Contributed by AV, 14-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ (𝑀 ∈ Mnd → ( I ↾ 𝐵) ∈ (𝑀 MndHom 𝑀)) | ||
| Theorem | mhmf1o 18688 | A monoid homomorphism is bijective iff its converse is also a monoid homomorphism. (Contributed by AV, 22-Oct-2019.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝐹:𝐵–1-1-onto→𝐶 ↔ ◡𝐹 ∈ (𝑆 MndHom 𝑅))) | ||
| Theorem | mndvcl 18689 | Tuple-wise additive closure in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + 𝑌) ∈ (𝐵 ↑m 𝐼)) | ||
| Theorem | mndvass 18690 | Tuple-wise associativity in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mnd ∧ (𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼) ∧ 𝑍 ∈ (𝐵 ↑m 𝐼))) → ((𝑋 ∘f + 𝑌) ∘f + 𝑍) = (𝑋 ∘f + (𝑌 ∘f + 𝑍))) | ||
| Theorem | mndvlid 18691 | Tuple-wise left identity in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 0 = (0g‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → ((𝐼 × { 0 }) ∘f + 𝑋) = 𝑋) | ||
| Theorem | mndvrid 18692 | Tuple-wise right identity in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 0 = (0g‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + (𝐼 × { 0 })) = 𝑋) | ||
| Theorem | mhmvlin 18693 | Tuple extension of monoid homomorphisms. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ ⨣ = (+g‘𝑁) ⇒ ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → (𝐹 ∘ (𝑋 ∘f + 𝑌)) = ((𝐹 ∘ 𝑋) ∘f ⨣ (𝐹 ∘ 𝑌))) | ||
| Theorem | submrcl 18694 | Reverse closure for submonoids. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd) | ||
| Theorem | issubm 18695* | Expand definition of a submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 0 = (0g‘𝑀) & ⊢ + = (+g‘𝑀) ⇒ ⊢ (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆))) | ||
| Theorem | issubm2 18696 | Submonoids are subsets that are also monoids with the same zero. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 0 = (0g‘𝑀) & ⊢ 𝐻 = (𝑀 ↾s 𝑆) ⇒ ⊢ (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ 𝐻 ∈ Mnd))) | ||
| Theorem | issubmndb 18697 | The submonoid predicate. Analogous to issubg 19023. (Contributed by AV, 1-Feb-2024.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝑆 ∈ (SubMnd‘𝐺) ↔ ((𝐺 ∈ Mnd ∧ (𝐺 ↾s 𝑆) ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆))) | ||
| Theorem | issubmd 18698* | Deduction for proving a submonoid. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 0 = (0g‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝜃 ∧ 𝜏))) → 𝜂) & ⊢ (𝑧 = 0 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝑥 → (𝜓 ↔ 𝜃)) & ⊢ (𝑧 = 𝑦 → (𝜓 ↔ 𝜏)) & ⊢ (𝑧 = (𝑥 + 𝑦) → (𝜓 ↔ 𝜂)) ⇒ ⊢ (𝜑 → {𝑧 ∈ 𝐵 ∣ 𝜓} ∈ (SubMnd‘𝑀)) | ||
| Theorem | mndissubm 18699 | If the base set of a monoid is contained in the base set of another monoid, and the group operation of the monoid is the restriction of the group operation of the other monoid to its base set, and the identity element of the other monoid is contained in the base set of the monoid, then the (base set of the) monoid is a submonoid of the other monoid. Analogous to grpissubg 19043. (Contributed by AV, 17-Feb-2024.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = (Base‘𝐻) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) → ((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubMnd‘𝐺))) | ||
| Theorem | resmndismnd 18700 | If the base set of a monoid is contained in the base set of another monoid, and the group operation of the monoid is the restriction of the group operation of the other monoid to its base set, and the identity element of the other monoid is contained in the base set of the monoid, then the other monoid restricted to the base set of the monoid is a monoid. Analogous to resgrpisgrp 19044. (Contributed by AV, 17-Feb-2024.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = (Base‘𝐻) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) → ((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → (𝐺 ↾s 𝑆) ∈ Mnd)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |