MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-mgp Structured version   Visualization version   GIF version

Definition df-mgp 20162
Description: Define a structure that puts the multiplication operation of a ring in the addition slot. Note that this will not actually be a group for the average ring, or even for a field, but it will be a monoid, and unitgrp 20409 shows that we get a group if we restrict to the elements that have inverses. This allows to formalize such notions as "the multiplication operation of a ring is a monoid" (ringmgp 20266) or "the multiplicative identity" in terms of the identity of a monoid (df-ur 20209). (Contributed by Mario Carneiro, 21-Dec-2014.)
Assertion
Ref Expression
df-mgp mulGrp = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(+g‘ndx), (.r𝑤)⟩))

Detailed syntax breakdown of Definition df-mgp
StepHypRef Expression
1 cmgp 20161 . 2 class mulGrp
2 vw . . 3 setvar 𝑤
3 cvv 3488 . . 3 class V
42cv 1536 . . . 4 class 𝑤
5 cnx 17240 . . . . . 6 class ndx
6 cplusg 17311 . . . . . 6 class +g
75, 6cfv 6573 . . . . 5 class (+g‘ndx)
8 cmulr 17312 . . . . . 6 class .r
94, 8cfv 6573 . . . . 5 class (.r𝑤)
107, 9cop 4654 . . . 4 class ⟨(+g‘ndx), (.r𝑤)⟩
11 csts 17210 . . . 4 class sSet
124, 10, 11co 7448 . . 3 class (𝑤 sSet ⟨(+g‘ndx), (.r𝑤)⟩)
132, 3, 12cmpt 5249 . 2 class (𝑤 ∈ V ↦ (𝑤 sSet ⟨(+g‘ndx), (.r𝑤)⟩))
141, 13wceq 1537 1 wff mulGrp = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(+g‘ndx), (.r𝑤)⟩))
Colors of variables: wff setvar class
This definition is referenced by:  fnmgp  20163  mgpval  20164
  Copyright terms: Public domain W3C validator