| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-mgp | Structured version Visualization version GIF version | ||
| Description: Define a structure that puts the multiplication operation of a ring in the addition slot. Note that this will not actually be a group for the average ring, or even for a field, but it will be a monoid, and unitgrp 20383 shows that we get a group if we restrict to the elements that have inverses. This allows to formalize such notions as "the multiplication operation of a ring is a monoid" (ringmgp 20236) or "the multiplicative identity" in terms of the identity of a monoid (df-ur 20179). (Contributed by Mario Carneiro, 21-Dec-2014.) |
| Ref | Expression |
|---|---|
| df-mgp | ⊢ mulGrp = (𝑤 ∈ V ↦ (𝑤 sSet 〈(+g‘ndx), (.r‘𝑤)〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmgp 20137 | . 2 class mulGrp | |
| 2 | vw | . . 3 setvar 𝑤 | |
| 3 | cvv 3480 | . . 3 class V | |
| 4 | 2 | cv 1539 | . . . 4 class 𝑤 |
| 5 | cnx 17230 | . . . . . 6 class ndx | |
| 6 | cplusg 17297 | . . . . . 6 class +g | |
| 7 | 5, 6 | cfv 6561 | . . . . 5 class (+g‘ndx) |
| 8 | cmulr 17298 | . . . . . 6 class .r | |
| 9 | 4, 8 | cfv 6561 | . . . . 5 class (.r‘𝑤) |
| 10 | 7, 9 | cop 4632 | . . . 4 class 〈(+g‘ndx), (.r‘𝑤)〉 |
| 11 | csts 17200 | . . . 4 class sSet | |
| 12 | 4, 10, 11 | co 7431 | . . 3 class (𝑤 sSet 〈(+g‘ndx), (.r‘𝑤)〉) |
| 13 | 2, 3, 12 | cmpt 5225 | . 2 class (𝑤 ∈ V ↦ (𝑤 sSet 〈(+g‘ndx), (.r‘𝑤)〉)) |
| 14 | 1, 13 | wceq 1540 | 1 wff mulGrp = (𝑤 ∈ V ↦ (𝑤 sSet 〈(+g‘ndx), (.r‘𝑤)〉)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: fnmgp 20139 mgpval 20140 |
| Copyright terms: Public domain | W3C validator |