MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnmgp Structured version   Visualization version   GIF version

Theorem fnmgp 19720
Description: The multiplicative group operator is a function. (Contributed by Mario Carneiro, 11-Mar-2015.)
Assertion
Ref Expression
fnmgp mulGrp Fn V

Proof of Theorem fnmgp
StepHypRef Expression
1 ovex 7304 . 2 (𝑥 sSet ⟨(+g‘ndx), (.r𝑥)⟩) ∈ V
2 df-mgp 19719 . 2 mulGrp = (𝑥 ∈ V ↦ (𝑥 sSet ⟨(+g‘ndx), (.r𝑥)⟩))
31, 2fnmpti 6574 1 mulGrp Fn V
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3431  cop 4573   Fn wfn 6427  cfv 6432  (class class class)co 7271   sSet csts 16862  ndxcnx 16892  +gcplusg 16960  .rcmulr 16961  mulGrpcmgp 19718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-iota 6390  df-fun 6434  df-fn 6435  df-fv 6440  df-ov 7274  df-mgp 19719
This theorem is referenced by:  ringidval  19737  mgpf  19796  prdsmgp  19847  prdscrngd  19850  pws1  19853  pwsmgp  19855
  Copyright terms: Public domain W3C validator