![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnmgp | Structured version Visualization version GIF version |
Description: The multiplicative group operator is a function. (Contributed by Mario Carneiro, 11-Mar-2015.) |
Ref | Expression |
---|---|
fnmgp | ⊢ mulGrp Fn V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7446 | . 2 ⊢ (𝑥 sSet 〈(+g‘ndx), (.r‘𝑥)〉) ∈ V | |
2 | df-mgp 20111 | . 2 ⊢ mulGrp = (𝑥 ∈ V ↦ (𝑥 sSet 〈(+g‘ndx), (.r‘𝑥)〉)) | |
3 | 1, 2 | fnmpti 6693 | 1 ⊢ mulGrp Fn V |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3462 〈cop 4629 Fn wfn 6538 ‘cfv 6543 (class class class)co 7413 sSet csts 17157 ndxcnx 17187 +gcplusg 17258 .rcmulr 17259 mulGrpcmgp 20110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 df-ov 7416 df-mgp 20111 |
This theorem is referenced by: prdsmgp 20127 rngmgpf 20133 ringidval 20159 mgpf 20224 prdscrngd 20294 pws1 20297 pwsmgp 20299 |
Copyright terms: Public domain | W3C validator |