Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnmgp | Structured version Visualization version GIF version |
Description: The multiplicative group operator is a function. (Contributed by Mario Carneiro, 11-Mar-2015.) |
Ref | Expression |
---|---|
fnmgp | ⊢ mulGrp Fn V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7304 | . 2 ⊢ (𝑥 sSet 〈(+g‘ndx), (.r‘𝑥)〉) ∈ V | |
2 | df-mgp 19719 | . 2 ⊢ mulGrp = (𝑥 ∈ V ↦ (𝑥 sSet 〈(+g‘ndx), (.r‘𝑥)〉)) | |
3 | 1, 2 | fnmpti 6574 | 1 ⊢ mulGrp Fn V |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3431 〈cop 4573 Fn wfn 6427 ‘cfv 6432 (class class class)co 7271 sSet csts 16862 ndxcnx 16892 +gcplusg 16960 .rcmulr 16961 mulGrpcmgp 19718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6390 df-fun 6434 df-fn 6435 df-fv 6440 df-ov 7274 df-mgp 19719 |
This theorem is referenced by: ringidval 19737 mgpf 19796 prdsmgp 19847 prdscrngd 19850 pws1 19853 pwsmgp 19855 |
Copyright terms: Public domain | W3C validator |