MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnmgp Structured version   Visualization version   GIF version

Theorem fnmgp 20112
Description: The multiplicative group operator is a function. (Contributed by Mario Carneiro, 11-Mar-2015.)
Assertion
Ref Expression
fnmgp mulGrp Fn V

Proof of Theorem fnmgp
StepHypRef Expression
1 ovex 7446 . 2 (𝑥 sSet ⟨(+g‘ndx), (.r𝑥)⟩) ∈ V
2 df-mgp 20111 . 2 mulGrp = (𝑥 ∈ V ↦ (𝑥 sSet ⟨(+g‘ndx), (.r𝑥)⟩))
31, 2fnmpti 6693 1 mulGrp Fn V
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3462  cop 4629   Fn wfn 6538  cfv 6543  (class class class)co 7413   sSet csts 17157  ndxcnx 17187  +gcplusg 17258  .rcmulr 17259  mulGrpcmgp 20110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3949  df-un 3951  df-ss 3963  df-nul 4323  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6495  df-fun 6545  df-fn 6546  df-fv 6551  df-ov 7416  df-mgp 20111
This theorem is referenced by:  prdsmgp  20127  rngmgpf  20133  ringidval  20159  mgpf  20224  prdscrngd  20294  pws1  20297  pwsmgp  20299
  Copyright terms: Public domain W3C validator