MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnmgp Structured version   Visualization version   GIF version

Theorem fnmgp 20068
Description: The multiplicative group operator is a function. (Contributed by Mario Carneiro, 11-Mar-2015.)
Assertion
Ref Expression
fnmgp mulGrp Fn V

Proof of Theorem fnmgp
StepHypRef Expression
1 ovex 7388 . 2 (𝑥 sSet ⟨(+g‘ndx), (.r𝑥)⟩) ∈ V
2 df-mgp 20067 . 2 mulGrp = (𝑥 ∈ V ↦ (𝑥 sSet ⟨(+g‘ndx), (.r𝑥)⟩))
31, 2fnmpti 6632 1 mulGrp Fn V
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3437  cop 4583   Fn wfn 6484  cfv 6489  (class class class)co 7355   sSet csts 17081  ndxcnx 17111  +gcplusg 17168  .rcmulr 17169  mulGrpcmgp 20066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6445  df-fun 6491  df-fn 6492  df-fv 6497  df-ov 7358  df-mgp 20067
This theorem is referenced by:  prdsmgp  20077  rngmgpf  20083  ringidval  20109  mgpf  20174  prdscrngd  20248  pws1  20251  pwsmgp  20253
  Copyright terms: Public domain W3C validator