![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mgpval | Structured version Visualization version GIF version |
Description: Value of the multiplication group operation. (Contributed by Mario Carneiro, 21-Dec-2014.) |
Ref | Expression |
---|---|
mgpval.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
mgpval.2 | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
mgpval | ⊢ 𝑀 = (𝑅 sSet 〈(+g‘ndx), · 〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgpval.1 | . 2 ⊢ 𝑀 = (mulGrp‘𝑅) | |
2 | id 22 | . . . . 5 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
3 | fveq2 6896 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (.r‘𝑟) = (.r‘𝑅)) | |
4 | mgpval.2 | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
5 | 3, 4 | eqtr4di 2783 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (.r‘𝑟) = · ) |
6 | 5 | opeq2d 4882 | . . . . 5 ⊢ (𝑟 = 𝑅 → 〈(+g‘ndx), (.r‘𝑟)〉 = 〈(+g‘ndx), · 〉) |
7 | 2, 6 | oveq12d 7437 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑟 sSet 〈(+g‘ndx), (.r‘𝑟)〉) = (𝑅 sSet 〈(+g‘ndx), · 〉)) |
8 | df-mgp 20087 | . . . 4 ⊢ mulGrp = (𝑟 ∈ V ↦ (𝑟 sSet 〈(+g‘ndx), (.r‘𝑟)〉)) | |
9 | ovex 7452 | . . . 4 ⊢ (𝑅 sSet 〈(+g‘ndx), · 〉) ∈ V | |
10 | 7, 8, 9 | fvmpt 7004 | . . 3 ⊢ (𝑅 ∈ V → (mulGrp‘𝑅) = (𝑅 sSet 〈(+g‘ndx), · 〉)) |
11 | fvprc 6888 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = ∅) | |
12 | reldmsets 17137 | . . . . 5 ⊢ Rel dom sSet | |
13 | 12 | ovprc1 7458 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝑅 sSet 〈(+g‘ndx), · 〉) = ∅) |
14 | 11, 13 | eqtr4d 2768 | . . 3 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = (𝑅 sSet 〈(+g‘ndx), · 〉)) |
15 | 10, 14 | pm2.61i 182 | . 2 ⊢ (mulGrp‘𝑅) = (𝑅 sSet 〈(+g‘ndx), · 〉) |
16 | 1, 15 | eqtri 2753 | 1 ⊢ 𝑀 = (𝑅 sSet 〈(+g‘ndx), · 〉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1533 ∈ wcel 2098 Vcvv 3461 ∅c0 4322 〈cop 4636 ‘cfv 6549 (class class class)co 7419 sSet csts 17135 ndxcnx 17165 +gcplusg 17236 .rcmulr 17237 mulGrpcmgp 20086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6501 df-fun 6551 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-sets 17136 df-mgp 20087 |
This theorem is referenced by: mgpplusg 20090 mgplemOLD 20091 mgpbas 20092 mgpsca 20094 mgptset 20096 mgpds 20099 mgpress 20101 mgpressOLD 20102 |
Copyright terms: Public domain | W3C validator |