Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mgpval | Structured version Visualization version GIF version |
Description: Value of the multiplication group operation. (Contributed by Mario Carneiro, 21-Dec-2014.) |
Ref | Expression |
---|---|
mgpval.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
mgpval.2 | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
mgpval | ⊢ 𝑀 = (𝑅 sSet 〈(+g‘ndx), · 〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgpval.1 | . 2 ⊢ 𝑀 = (mulGrp‘𝑅) | |
2 | id 22 | . . . . 5 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
3 | fveq2 6756 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (.r‘𝑟) = (.r‘𝑅)) | |
4 | mgpval.2 | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
5 | 3, 4 | eqtr4di 2797 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (.r‘𝑟) = · ) |
6 | 5 | opeq2d 4808 | . . . . 5 ⊢ (𝑟 = 𝑅 → 〈(+g‘ndx), (.r‘𝑟)〉 = 〈(+g‘ndx), · 〉) |
7 | 2, 6 | oveq12d 7273 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑟 sSet 〈(+g‘ndx), (.r‘𝑟)〉) = (𝑅 sSet 〈(+g‘ndx), · 〉)) |
8 | df-mgp 19636 | . . . 4 ⊢ mulGrp = (𝑟 ∈ V ↦ (𝑟 sSet 〈(+g‘ndx), (.r‘𝑟)〉)) | |
9 | ovex 7288 | . . . 4 ⊢ (𝑅 sSet 〈(+g‘ndx), · 〉) ∈ V | |
10 | 7, 8, 9 | fvmpt 6857 | . . 3 ⊢ (𝑅 ∈ V → (mulGrp‘𝑅) = (𝑅 sSet 〈(+g‘ndx), · 〉)) |
11 | fvprc 6748 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = ∅) | |
12 | reldmsets 16794 | . . . . 5 ⊢ Rel dom sSet | |
13 | 12 | ovprc1 7294 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝑅 sSet 〈(+g‘ndx), · 〉) = ∅) |
14 | 11, 13 | eqtr4d 2781 | . . 3 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = (𝑅 sSet 〈(+g‘ndx), · 〉)) |
15 | 10, 14 | pm2.61i 182 | . 2 ⊢ (mulGrp‘𝑅) = (𝑅 sSet 〈(+g‘ndx), · 〉) |
16 | 1, 15 | eqtri 2766 | 1 ⊢ 𝑀 = (𝑅 sSet 〈(+g‘ndx), · 〉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 〈cop 4564 ‘cfv 6418 (class class class)co 7255 sSet csts 16792 ndxcnx 16822 +gcplusg 16888 .rcmulr 16889 mulGrpcmgp 19635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-sets 16793 df-mgp 19636 |
This theorem is referenced by: mgpplusg 19639 mgplemOLD 19640 mgpbas 19641 mgpsca 19643 mgptset 19645 mgpds 19648 mgpress 19650 mgpressOLD 19651 |
Copyright terms: Public domain | W3C validator |