MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgpval Structured version   Visualization version   GIF version

Theorem mgpval 20108
Description: Value of the multiplication group operation. (Contributed by Mario Carneiro, 21-Dec-2014.)
Hypotheses
Ref Expression
mgpval.1 𝑀 = (mulGrp‘𝑅)
mgpval.2 · = (.r𝑅)
Assertion
Ref Expression
mgpval 𝑀 = (𝑅 sSet ⟨(+g‘ndx), · ⟩)

Proof of Theorem mgpval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 mgpval.1 . 2 𝑀 = (mulGrp‘𝑅)
2 id 22 . . . . 5 (𝑟 = 𝑅𝑟 = 𝑅)
3 fveq2 6881 . . . . . . 7 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
4 mgpval.2 . . . . . . 7 · = (.r𝑅)
53, 4eqtr4di 2789 . . . . . 6 (𝑟 = 𝑅 → (.r𝑟) = · )
65opeq2d 4861 . . . . 5 (𝑟 = 𝑅 → ⟨(+g‘ndx), (.r𝑟)⟩ = ⟨(+g‘ndx), · ⟩)
72, 6oveq12d 7428 . . . 4 (𝑟 = 𝑅 → (𝑟 sSet ⟨(+g‘ndx), (.r𝑟)⟩) = (𝑅 sSet ⟨(+g‘ndx), · ⟩))
8 df-mgp 20106 . . . 4 mulGrp = (𝑟 ∈ V ↦ (𝑟 sSet ⟨(+g‘ndx), (.r𝑟)⟩))
9 ovex 7443 . . . 4 (𝑅 sSet ⟨(+g‘ndx), · ⟩) ∈ V
107, 8, 9fvmpt 6991 . . 3 (𝑅 ∈ V → (mulGrp‘𝑅) = (𝑅 sSet ⟨(+g‘ndx), · ⟩))
11 fvprc 6873 . . . 4 𝑅 ∈ V → (mulGrp‘𝑅) = ∅)
12 reldmsets 17189 . . . . 5 Rel dom sSet
1312ovprc1 7449 . . . 4 𝑅 ∈ V → (𝑅 sSet ⟨(+g‘ndx), · ⟩) = ∅)
1411, 13eqtr4d 2774 . . 3 𝑅 ∈ V → (mulGrp‘𝑅) = (𝑅 sSet ⟨(+g‘ndx), · ⟩))
1510, 14pm2.61i 182 . 2 (mulGrp‘𝑅) = (𝑅 sSet ⟨(+g‘ndx), · ⟩)
161, 15eqtri 2759 1 𝑀 = (𝑅 sSet ⟨(+g‘ndx), · ⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3464  c0 4313  cop 4612  cfv 6536  (class class class)co 7410   sSet csts 17187  ndxcnx 17217  +gcplusg 17276  .rcmulr 17277  mulGrpcmgp 20105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-sets 17188  df-mgp 20106
This theorem is referenced by:  mgpplusg  20109  mgpbas  20110  mgpsca  20111  mgptset  20112  mgpds  20114  mgpress  20115
  Copyright terms: Public domain W3C validator