MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgpval Structured version   Visualization version   GIF version

Theorem mgpval 20089
Description: Value of the multiplication group operation. (Contributed by Mario Carneiro, 21-Dec-2014.)
Hypotheses
Ref Expression
mgpval.1 𝑀 = (mulGrp‘𝑅)
mgpval.2 · = (.r𝑅)
Assertion
Ref Expression
mgpval 𝑀 = (𝑅 sSet ⟨(+g‘ndx), · ⟩)

Proof of Theorem mgpval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 mgpval.1 . 2 𝑀 = (mulGrp‘𝑅)
2 id 22 . . . . 5 (𝑟 = 𝑅𝑟 = 𝑅)
3 fveq2 6896 . . . . . . 7 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
4 mgpval.2 . . . . . . 7 · = (.r𝑅)
53, 4eqtr4di 2783 . . . . . 6 (𝑟 = 𝑅 → (.r𝑟) = · )
65opeq2d 4882 . . . . 5 (𝑟 = 𝑅 → ⟨(+g‘ndx), (.r𝑟)⟩ = ⟨(+g‘ndx), · ⟩)
72, 6oveq12d 7437 . . . 4 (𝑟 = 𝑅 → (𝑟 sSet ⟨(+g‘ndx), (.r𝑟)⟩) = (𝑅 sSet ⟨(+g‘ndx), · ⟩))
8 df-mgp 20087 . . . 4 mulGrp = (𝑟 ∈ V ↦ (𝑟 sSet ⟨(+g‘ndx), (.r𝑟)⟩))
9 ovex 7452 . . . 4 (𝑅 sSet ⟨(+g‘ndx), · ⟩) ∈ V
107, 8, 9fvmpt 7004 . . 3 (𝑅 ∈ V → (mulGrp‘𝑅) = (𝑅 sSet ⟨(+g‘ndx), · ⟩))
11 fvprc 6888 . . . 4 𝑅 ∈ V → (mulGrp‘𝑅) = ∅)
12 reldmsets 17137 . . . . 5 Rel dom sSet
1312ovprc1 7458 . . . 4 𝑅 ∈ V → (𝑅 sSet ⟨(+g‘ndx), · ⟩) = ∅)
1411, 13eqtr4d 2768 . . 3 𝑅 ∈ V → (mulGrp‘𝑅) = (𝑅 sSet ⟨(+g‘ndx), · ⟩))
1510, 14pm2.61i 182 . 2 (mulGrp‘𝑅) = (𝑅 sSet ⟨(+g‘ndx), · ⟩)
161, 15eqtri 2753 1 𝑀 = (𝑅 sSet ⟨(+g‘ndx), · ⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1533  wcel 2098  Vcvv 3461  c0 4322  cop 4636  cfv 6549  (class class class)co 7419   sSet csts 17135  ndxcnx 17165  +gcplusg 17236  .rcmulr 17237  mulGrpcmgp 20086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-iota 6501  df-fun 6551  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-sets 17136  df-mgp 20087
This theorem is referenced by:  mgpplusg  20090  mgplemOLD  20091  mgpbas  20092  mgpsca  20094  mgptset  20096  mgpds  20099  mgpress  20101  mgpressOLD  20102
  Copyright terms: Public domain W3C validator