|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > mgpval | Structured version Visualization version GIF version | ||
| Description: Value of the multiplication group operation. (Contributed by Mario Carneiro, 21-Dec-2014.) | 
| Ref | Expression | 
|---|---|
| mgpval.1 | ⊢ 𝑀 = (mulGrp‘𝑅) | 
| mgpval.2 | ⊢ · = (.r‘𝑅) | 
| Ref | Expression | 
|---|---|
| mgpval | ⊢ 𝑀 = (𝑅 sSet 〈(+g‘ndx), · 〉) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mgpval.1 | . 2 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 2 | id 22 | . . . . 5 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
| 3 | fveq2 6905 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (.r‘𝑟) = (.r‘𝑅)) | |
| 4 | mgpval.2 | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
| 5 | 3, 4 | eqtr4di 2794 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (.r‘𝑟) = · ) | 
| 6 | 5 | opeq2d 4879 | . . . . 5 ⊢ (𝑟 = 𝑅 → 〈(+g‘ndx), (.r‘𝑟)〉 = 〈(+g‘ndx), · 〉) | 
| 7 | 2, 6 | oveq12d 7450 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑟 sSet 〈(+g‘ndx), (.r‘𝑟)〉) = (𝑅 sSet 〈(+g‘ndx), · 〉)) | 
| 8 | df-mgp 20139 | . . . 4 ⊢ mulGrp = (𝑟 ∈ V ↦ (𝑟 sSet 〈(+g‘ndx), (.r‘𝑟)〉)) | |
| 9 | ovex 7465 | . . . 4 ⊢ (𝑅 sSet 〈(+g‘ndx), · 〉) ∈ V | |
| 10 | 7, 8, 9 | fvmpt 7015 | . . 3 ⊢ (𝑅 ∈ V → (mulGrp‘𝑅) = (𝑅 sSet 〈(+g‘ndx), · 〉)) | 
| 11 | fvprc 6897 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = ∅) | |
| 12 | reldmsets 17203 | . . . . 5 ⊢ Rel dom sSet | |
| 13 | 12 | ovprc1 7471 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝑅 sSet 〈(+g‘ndx), · 〉) = ∅) | 
| 14 | 11, 13 | eqtr4d 2779 | . . 3 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = (𝑅 sSet 〈(+g‘ndx), · 〉)) | 
| 15 | 10, 14 | pm2.61i 182 | . 2 ⊢ (mulGrp‘𝑅) = (𝑅 sSet 〈(+g‘ndx), · 〉) | 
| 16 | 1, 15 | eqtri 2764 | 1 ⊢ 𝑀 = (𝑅 sSet 〈(+g‘ndx), · 〉) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2107 Vcvv 3479 ∅c0 4332 〈cop 4631 ‘cfv 6560 (class class class)co 7432 sSet csts 17201 ndxcnx 17231 +gcplusg 17298 .rcmulr 17299 mulGrpcmgp 20138 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-iota 6513 df-fun 6562 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-sets 17202 df-mgp 20139 | 
| This theorem is referenced by: mgpplusg 20142 mgpbas 20143 mgpsca 20144 mgptset 20145 mgpds 20147 mgpress 20148 | 
| Copyright terms: Public domain | W3C validator |