| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mgpval | Structured version Visualization version GIF version | ||
| Description: Value of the multiplication group operation. (Contributed by Mario Carneiro, 21-Dec-2014.) |
| Ref | Expression |
|---|---|
| mgpval.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
| mgpval.2 | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| mgpval | ⊢ 𝑀 = (𝑅 sSet 〈(+g‘ndx), · 〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgpval.1 | . 2 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 2 | id 22 | . . . . 5 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
| 3 | fveq2 6861 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (.r‘𝑟) = (.r‘𝑅)) | |
| 4 | mgpval.2 | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
| 5 | 3, 4 | eqtr4di 2783 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (.r‘𝑟) = · ) |
| 6 | 5 | opeq2d 4847 | . . . . 5 ⊢ (𝑟 = 𝑅 → 〈(+g‘ndx), (.r‘𝑟)〉 = 〈(+g‘ndx), · 〉) |
| 7 | 2, 6 | oveq12d 7408 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑟 sSet 〈(+g‘ndx), (.r‘𝑟)〉) = (𝑅 sSet 〈(+g‘ndx), · 〉)) |
| 8 | df-mgp 20057 | . . . 4 ⊢ mulGrp = (𝑟 ∈ V ↦ (𝑟 sSet 〈(+g‘ndx), (.r‘𝑟)〉)) | |
| 9 | ovex 7423 | . . . 4 ⊢ (𝑅 sSet 〈(+g‘ndx), · 〉) ∈ V | |
| 10 | 7, 8, 9 | fvmpt 6971 | . . 3 ⊢ (𝑅 ∈ V → (mulGrp‘𝑅) = (𝑅 sSet 〈(+g‘ndx), · 〉)) |
| 11 | fvprc 6853 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = ∅) | |
| 12 | reldmsets 17142 | . . . . 5 ⊢ Rel dom sSet | |
| 13 | 12 | ovprc1 7429 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝑅 sSet 〈(+g‘ndx), · 〉) = ∅) |
| 14 | 11, 13 | eqtr4d 2768 | . . 3 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = (𝑅 sSet 〈(+g‘ndx), · 〉)) |
| 15 | 10, 14 | pm2.61i 182 | . 2 ⊢ (mulGrp‘𝑅) = (𝑅 sSet 〈(+g‘ndx), · 〉) |
| 16 | 1, 15 | eqtri 2753 | 1 ⊢ 𝑀 = (𝑅 sSet 〈(+g‘ndx), · 〉) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 〈cop 4598 ‘cfv 6514 (class class class)co 7390 sSet csts 17140 ndxcnx 17170 +gcplusg 17227 .rcmulr 17228 mulGrpcmgp 20056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-sets 17141 df-mgp 20057 |
| This theorem is referenced by: mgpplusg 20060 mgpbas 20061 mgpsca 20062 mgptset 20063 mgpds 20065 mgpress 20066 |
| Copyright terms: Public domain | W3C validator |