MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgpval Structured version   Visualization version   GIF version

Theorem mgpval 20038
Description: Value of the multiplication group operation. (Contributed by Mario Carneiro, 21-Dec-2014.)
Hypotheses
Ref Expression
mgpval.1 𝑀 = (mulGrpβ€˜π‘…)
mgpval.2 Β· = (.rβ€˜π‘…)
Assertion
Ref Expression
mgpval 𝑀 = (𝑅 sSet ⟨(+gβ€˜ndx), Β· ⟩)

Proof of Theorem mgpval
Dummy variable π‘Ÿ is distinct from all other variables.
StepHypRef Expression
1 mgpval.1 . 2 𝑀 = (mulGrpβ€˜π‘…)
2 id 22 . . . . 5 (π‘Ÿ = 𝑅 β†’ π‘Ÿ = 𝑅)
3 fveq2 6891 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ (.rβ€˜π‘Ÿ) = (.rβ€˜π‘…))
4 mgpval.2 . . . . . . 7 Β· = (.rβ€˜π‘…)
53, 4eqtr4di 2789 . . . . . 6 (π‘Ÿ = 𝑅 β†’ (.rβ€˜π‘Ÿ) = Β· )
65opeq2d 4880 . . . . 5 (π‘Ÿ = 𝑅 β†’ ⟨(+gβ€˜ndx), (.rβ€˜π‘Ÿ)⟩ = ⟨(+gβ€˜ndx), Β· ⟩)
72, 6oveq12d 7430 . . . 4 (π‘Ÿ = 𝑅 β†’ (π‘Ÿ sSet ⟨(+gβ€˜ndx), (.rβ€˜π‘Ÿ)⟩) = (𝑅 sSet ⟨(+gβ€˜ndx), Β· ⟩))
8 df-mgp 20036 . . . 4 mulGrp = (π‘Ÿ ∈ V ↦ (π‘Ÿ sSet ⟨(+gβ€˜ndx), (.rβ€˜π‘Ÿ)⟩))
9 ovex 7445 . . . 4 (𝑅 sSet ⟨(+gβ€˜ndx), Β· ⟩) ∈ V
107, 8, 9fvmpt 6998 . . 3 (𝑅 ∈ V β†’ (mulGrpβ€˜π‘…) = (𝑅 sSet ⟨(+gβ€˜ndx), Β· ⟩))
11 fvprc 6883 . . . 4 (Β¬ 𝑅 ∈ V β†’ (mulGrpβ€˜π‘…) = βˆ…)
12 reldmsets 17105 . . . . 5 Rel dom sSet
1312ovprc1 7451 . . . 4 (Β¬ 𝑅 ∈ V β†’ (𝑅 sSet ⟨(+gβ€˜ndx), Β· ⟩) = βˆ…)
1411, 13eqtr4d 2774 . . 3 (Β¬ 𝑅 ∈ V β†’ (mulGrpβ€˜π‘…) = (𝑅 sSet ⟨(+gβ€˜ndx), Β· ⟩))
1510, 14pm2.61i 182 . 2 (mulGrpβ€˜π‘…) = (𝑅 sSet ⟨(+gβ€˜ndx), Β· ⟩)
161, 15eqtri 2759 1 𝑀 = (𝑅 sSet ⟨(+gβ€˜ndx), Β· ⟩)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   = wceq 1540   ∈ wcel 2105  Vcvv 3473  βˆ…c0 4322  βŸ¨cop 4634  β€˜cfv 6543  (class class class)co 7412   sSet csts 17103  ndxcnx 17133  +gcplusg 17204  .rcmulr 17205  mulGrpcmgp 20035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-sets 17104  df-mgp 20036
This theorem is referenced by:  mgpplusg  20039  mgplemOLD  20040  mgpbas  20041  mgpsca  20043  mgptset  20045  mgpds  20048  mgpress  20050  mgpressOLD  20051
  Copyright terms: Public domain W3C validator