MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgpval Structured version   Visualization version   GIF version

Theorem mgpval 20164
Description: Value of the multiplication group operation. (Contributed by Mario Carneiro, 21-Dec-2014.)
Hypotheses
Ref Expression
mgpval.1 𝑀 = (mulGrp‘𝑅)
mgpval.2 · = (.r𝑅)
Assertion
Ref Expression
mgpval 𝑀 = (𝑅 sSet ⟨(+g‘ndx), · ⟩)

Proof of Theorem mgpval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 mgpval.1 . 2 𝑀 = (mulGrp‘𝑅)
2 id 22 . . . . 5 (𝑟 = 𝑅𝑟 = 𝑅)
3 fveq2 6920 . . . . . . 7 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
4 mgpval.2 . . . . . . 7 · = (.r𝑅)
53, 4eqtr4di 2798 . . . . . 6 (𝑟 = 𝑅 → (.r𝑟) = · )
65opeq2d 4904 . . . . 5 (𝑟 = 𝑅 → ⟨(+g‘ndx), (.r𝑟)⟩ = ⟨(+g‘ndx), · ⟩)
72, 6oveq12d 7466 . . . 4 (𝑟 = 𝑅 → (𝑟 sSet ⟨(+g‘ndx), (.r𝑟)⟩) = (𝑅 sSet ⟨(+g‘ndx), · ⟩))
8 df-mgp 20162 . . . 4 mulGrp = (𝑟 ∈ V ↦ (𝑟 sSet ⟨(+g‘ndx), (.r𝑟)⟩))
9 ovex 7481 . . . 4 (𝑅 sSet ⟨(+g‘ndx), · ⟩) ∈ V
107, 8, 9fvmpt 7029 . . 3 (𝑅 ∈ V → (mulGrp‘𝑅) = (𝑅 sSet ⟨(+g‘ndx), · ⟩))
11 fvprc 6912 . . . 4 𝑅 ∈ V → (mulGrp‘𝑅) = ∅)
12 reldmsets 17212 . . . . 5 Rel dom sSet
1312ovprc1 7487 . . . 4 𝑅 ∈ V → (𝑅 sSet ⟨(+g‘ndx), · ⟩) = ∅)
1411, 13eqtr4d 2783 . . 3 𝑅 ∈ V → (mulGrp‘𝑅) = (𝑅 sSet ⟨(+g‘ndx), · ⟩))
1510, 14pm2.61i 182 . 2 (mulGrp‘𝑅) = (𝑅 sSet ⟨(+g‘ndx), · ⟩)
161, 15eqtri 2768 1 𝑀 = (𝑅 sSet ⟨(+g‘ndx), · ⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352  cop 4654  cfv 6573  (class class class)co 7448   sSet csts 17210  ndxcnx 17240  +gcplusg 17311  .rcmulr 17312  mulGrpcmgp 20161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-sets 17211  df-mgp 20162
This theorem is referenced by:  mgpplusg  20165  mgplemOLD  20166  mgpbas  20167  mgpsca  20169  mgptset  20171  mgpds  20174  mgpress  20176  mgpressOLD  20177
  Copyright terms: Public domain W3C validator