MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringmgp Structured version   Visualization version   GIF version

Theorem ringmgp 20266
Description: A ring is a monoid under multiplication. (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypothesis
Ref Expression
ringmgp.g 𝐺 = (mulGrp‘𝑅)
Assertion
Ref Expression
ringmgp (𝑅 ∈ Ring → 𝐺 ∈ Mnd)

Proof of Theorem ringmgp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 ringmgp.g . . 3 𝐺 = (mulGrp‘𝑅)
3 eqid 2740 . . 3 (+g𝑅) = (+g𝑅)
4 eqid 2740 . . 3 (.r𝑅) = (.r𝑅)
51, 2, 3, 4isring 20264 . 2 (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ 𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)))))
65simp2bi 1146 1 (𝑅 ∈ Ring → 𝐺 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  Mndcmnd 18772  Grpcgrp 18973  mulGrpcmgp 20161  Ringcrg 20260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-ring 20262
This theorem is referenced by:  mgpf  20275  ringcl  20277  iscrng2  20279  ringass  20280  ringideu  20281  ringidcl  20289  ringidmlem  20291  ringsrg  20320  pwspjmhmmgpd  20351  pwsexpg  20352  unitsubm  20412  dfrhm2  20500  isrhm2d  20513  idrhm  20516  pwsco1rhm  20528  pwsco2rhm  20529  c0rhm  20560  c0rnghm  20561  subrgcrng  20603  subrgsubm  20613  issubrg3  20628  cntzsubr  20634  pwsdiagrhm  20635  isdomn3  20737  subrgacs  20823  cnfldexp  21440  expmhm  21477  nn0srg  21478  rge0srg  21479  fermltlchr  21567  freshmansdream  21616  frobrhm  21617  assamulgscmlem2  21943  psrcrng  22015  mplcoe3  22079  mplcoe5lem  22080  mplcoe5  22081  evlsgsummul  22139  mhppwdeg  22177  ply1moncl  22295  coe1pwmul  22303  ply1coefsupp  22322  ply1coe  22323  gsummoncoe1  22333  lply1binomsc  22336  evls1gsummul  22350  evl1expd  22370  evl1gsummul  22385  evl1scvarpw  22388  evl1scvarpwval  22389  evl1gsummon  22390  evls1fpws  22394  rhmply1mon  22414  ringvcl  22425  mat1mhm  22511  scmatmhm  22561  m1detdiag  22624  mdetdiaglem  22625  m2detleiblem2  22655  mat2pmatmhm  22760  pmatcollpwscmatlem1  22816  mply1topmatcllem  22830  mply1topmatcl  22832  pm2mpghm  22843  pm2mpmhm  22847  monmat2matmon  22851  pm2mp  22852  chpscmatgsumbin  22871  chpscmatgsummon  22872  chfacfscmulcl  22884  chfacfscmul0  22885  chfacfpmmulcl  22888  chfacfpmmul0  22889  chfacfpmmulgsum2  22892  cayhamlem1  22893  cpmadugsumlemB  22901  cpmadugsumlemC  22902  cpmadugsumlemF  22903  cayhamlem2  22911  cayhamlem4  22915  nrgtrg  24732  deg1pw  26180  idomrootle  26232  plypf1  26271  efsubm  26611  amgm  27052  wilthlem2  27130  wilthlem3  27131  dchrelbas3  27300  lgsqrlem2  27409  lgsqrlem3  27410  lgsqrlem4  27411  cntrcrng  33046  psgnid  33090  cnmsgn0g  33139  altgnsg  33142  isunit3  33221  0ringcring  33224  domnprodn0  33247  rrgsubm  33253  znfermltl  33359  unitprodclb  33382  ringlsmss  33388  rprmdvdspow  33526  1arithidomlem1  33528  1arithidom  33530  1arithufdlem2  33538  1arithufdlem3  33539  1arithufdlem4  33540  zringfrac  33547  evl1deg1  33566  evl1deg2  33567  evl1deg3  33568  gsummoncoe1fzo  33583  ply1degltdimlem  33635  ply1degltdim  33636  assarrginv  33649  evls1fldgencl  33680  rtelextdg2lem  33717  2sqr3minply  33738  iistmd  33848  aks6d1c1p2  42066  aks6d1c1p3  42067  aks6d1c1p6  42071  evl1gprodd  42074  aks6d1c2lem3  42083  idomnnzpownz  42089  aks6d1c5lem3  42094  aks6d1c5lem2  42095  deg1pow  42098  aks6d1c6lem1  42127  aks6d1c6lem2  42128  aks5lem2  42144  aks5lem3a  42146  domnexpgn0cl  42478  abvexp  42487  fidomncyc  42490  evlsvvvallem  42516  evlsvvval  42518  evlsexpval  42522  evlselv  42542  mhphf  42552  hbtlem4  43083  mon1psubm  43160  amgm2d  44160  amgm3d  44161  amgm4d  44162  invginvrid  48092  ply1mulgsumlem4  48118  ply1mulgsum  48119  amgmw2d  48898
  Copyright terms: Public domain W3C validator