Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ringmgp | Structured version Visualization version GIF version |
Description: A ring is a monoid under multiplication. (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
ringmgp.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
ringmgp | ⊢ (𝑅 ∈ Ring → 𝐺 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | ringmgp.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
3 | eqid 2738 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
4 | eqid 2738 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
5 | 1, 2, 3, 4 | isring 19702 | . 2 ⊢ (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ 𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))))) |
6 | 5 | simp2bi 1144 | 1 ⊢ (𝑅 ∈ Ring → 𝐺 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 .rcmulr 16889 Mndcmnd 18300 Grpcgrp 18492 mulGrpcmgp 19635 Ringcrg 19698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-ring 19700 |
This theorem is referenced by: mgpf 19713 ringcl 19715 iscrng2 19717 ringass 19718 ringideu 19719 ringidcl 19722 ringidmlem 19724 ringsrg 19743 unitsubm 19827 dfrhm2 19876 isrhm2d 19887 idrhm 19890 pwsco1rhm 19897 pwsco2rhm 19898 subrgcrng 19943 subrgsubm 19952 issubrg3 19967 cntzsubr 19972 pwsdiagrhm 19973 subrgacs 19983 cnfldexp 20543 expmhm 20579 nn0srg 20580 rge0srg 20581 assamulgscmlem2 21014 psrcrng 21092 mplcoe3 21149 mplcoe5lem 21150 mplcoe5 21151 evlsgsummul 21212 mhppwdeg 21250 ply1moncl 21352 coe1pwmul 21360 ply1coefsupp 21376 ply1coe 21377 gsummoncoe1 21385 lply1binomsc 21388 evls1gsummul 21401 evl1expd 21421 evl1gsummul 21436 evl1scvarpw 21439 evl1scvarpwval 21440 evl1gsummon 21441 ringvcl 21457 mat1mhm 21541 scmatmhm 21591 m1detdiag 21654 mdetdiaglem 21655 m2detleiblem2 21685 mat2pmatmhm 21790 pmatcollpwscmatlem1 21846 mply1topmatcllem 21860 mply1topmatcl 21862 pm2mpghm 21873 pm2mpmhm 21877 monmat2matmon 21881 pm2mp 21882 chpscmatgsumbin 21901 chpscmatgsummon 21902 chfacfscmulcl 21914 chfacfscmul0 21915 chfacfpmmulcl 21918 chfacfpmmul0 21919 chfacfpmmulgsum2 21922 cayhamlem1 21923 cpmadugsumlemB 21931 cpmadugsumlemC 21932 cpmadugsumlemF 21933 cayhamlem2 21941 cayhamlem4 21945 nrgtrg 23760 deg1pw 25190 plypf1 25278 efsubm 25612 amgm 26045 wilthlem2 26123 wilthlem3 26124 dchrelbas3 26291 lgsqrlem2 26400 lgsqrlem3 26401 lgsqrlem4 26402 cntrcrng 31224 psgnid 31266 cnmsgn0g 31315 altgnsg 31318 freshmansdream 31386 frobrhm 31387 znfermltl 31464 ringlsmss 31485 iistmd 31754 pwspjmhmmgpd 40192 pwsexpg 40193 evlsbagval 40198 evlsexpval 40199 mhphf 40208 hbtlem4 40867 idomrootle 40936 isdomn3 40945 mon1psubm 40947 amgm2d 41698 amgm3d 41699 amgm4d 41700 c0rhm 45358 c0rnghm 45359 lidlmsgrp 45372 invginvrid 45591 ply1mulgsumlem4 45618 ply1mulgsum 45619 amgmw2d 46394 |
Copyright terms: Public domain | W3C validator |