![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringmgp | Structured version Visualization version GIF version |
Description: A ring is a monoid under multiplication. (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
ringmgp.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
ringmgp | ⊢ (𝑅 ∈ Ring → 𝐺 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2778 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | ringmgp.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
3 | eqid 2778 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
4 | eqid 2778 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
5 | 1, 2, 3, 4 | isring 18949 | . 2 ⊢ (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ 𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))))) |
6 | 5 | simp2bi 1137 | 1 ⊢ (𝑅 ∈ Ring → 𝐺 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∀wral 3090 ‘cfv 6137 (class class class)co 6924 Basecbs 16266 +gcplusg 16349 .rcmulr 16350 Mndcmnd 17691 Grpcgrp 17820 mulGrpcmgp 18887 Ringcrg 18945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-nul 5027 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-br 4889 df-iota 6101 df-fv 6145 df-ov 6927 df-ring 18947 |
This theorem is referenced by: mgpf 18957 ringcl 18959 iscrng2 18961 ringass 18962 ringideu 18963 ringidcl 18966 ringidmlem 18968 ringsrg 18987 unitsubm 19068 dfrhm2 19117 isrhm2d 19128 idrhm 19131 pwsco1rhm 19138 pwsco2rhm 19139 subrgcrng 19187 subrgsubm 19196 issubrg3 19211 cntzsubr 19215 pwsdiagrhm 19216 assamulgscmlem2 19757 psrcrng 19821 mplcoe3 19874 mplcoe5lem 19875 mplcoe5 19876 ply1moncl 20048 coe1pwmul 20056 ply1coefsupp 20072 ply1coe 20073 gsummoncoe1 20081 lply1binomsc 20084 evls1gsummul 20097 evl1expd 20116 evl1gsummul 20131 evl1scvarpw 20134 evl1scvarpwval 20135 evl1gsummon 20136 cnfldexp 20186 expmhm 20222 nn0srg 20223 rge0srg 20224 ringvcl 20619 mat1mhm 20706 scmatmhm 20756 m1detdiag 20819 mdetdiaglem 20820 m2detleiblem2 20850 mat2pmatmhm 20956 pmatcollpwscmatlem1 21012 mply1topmatcllem 21026 mply1topmatcl 21028 pm2mpghm 21039 pm2mpmhm 21043 monmat2matmon 21047 pm2mp 21048 chpscmatgsumbin 21067 chpscmatgsummon 21068 chfacfscmulcl 21080 chfacfscmul0 21081 chfacfpmmulcl 21084 chfacfpmmul0 21085 chfacfpmmulgsum2 21088 cayhamlem1 21089 cpmadugsumlemB 21097 cpmadugsumlemC 21098 cpmadugsumlemF 21099 cayhamlem2 21107 cayhamlem4 21111 nrgtrg 22913 deg1pw 24328 plypf1 24416 efsubm 24746 amgm 25180 wilthlem2 25258 wilthlem3 25259 dchrelbas3 25426 lgsqrlem2 25535 lgsqrlem3 25536 lgsqrlem4 25537 psgnid 30453 iistmd 30554 hbtlem4 38669 subrgacs 38743 idomrootle 38746 isdomn3 38755 mon1psubm 38757 amgm2d 39471 amgm3d 39472 amgm4d 39473 c0rhm 42941 c0rnghm 42942 lidlmsgrp 42955 invginvrid 43177 ply1mulgsumlem4 43206 ply1mulgsum 43207 amgmw2d 43670 |
Copyright terms: Public domain | W3C validator |