Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ringmgp | Structured version Visualization version GIF version |
Description: A ring is a monoid under multiplication. (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
ringmgp.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
ringmgp | ⊢ (𝑅 ∈ Ring → 𝐺 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | ringmgp.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
3 | eqid 2738 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
4 | eqid 2738 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
5 | 1, 2, 3, 4 | isring 19787 | . 2 ⊢ (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ 𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))))) |
6 | 5 | simp2bi 1145 | 1 ⊢ (𝑅 ∈ Ring → 𝐺 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 .rcmulr 16963 Mndcmnd 18385 Grpcgrp 18577 mulGrpcmgp 19720 Ringcrg 19783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-ring 19785 |
This theorem is referenced by: mgpf 19798 ringcl 19800 iscrng2 19802 ringass 19803 ringideu 19804 ringidcl 19807 ringidmlem 19809 ringsrg 19828 unitsubm 19912 dfrhm2 19961 isrhm2d 19972 idrhm 19975 pwsco1rhm 19982 pwsco2rhm 19983 subrgcrng 20028 subrgsubm 20037 issubrg3 20052 cntzsubr 20057 pwsdiagrhm 20058 subrgacs 20068 cnfldexp 20631 expmhm 20667 nn0srg 20668 rge0srg 20669 assamulgscmlem2 21104 psrcrng 21182 mplcoe3 21239 mplcoe5lem 21240 mplcoe5 21241 evlsgsummul 21302 mhppwdeg 21340 ply1moncl 21442 coe1pwmul 21450 ply1coefsupp 21466 ply1coe 21467 gsummoncoe1 21475 lply1binomsc 21478 evls1gsummul 21491 evl1expd 21511 evl1gsummul 21526 evl1scvarpw 21529 evl1scvarpwval 21530 evl1gsummon 21531 ringvcl 21547 mat1mhm 21633 scmatmhm 21683 m1detdiag 21746 mdetdiaglem 21747 m2detleiblem2 21777 mat2pmatmhm 21882 pmatcollpwscmatlem1 21938 mply1topmatcllem 21952 mply1topmatcl 21954 pm2mpghm 21965 pm2mpmhm 21969 monmat2matmon 21973 pm2mp 21974 chpscmatgsumbin 21993 chpscmatgsummon 21994 chfacfscmulcl 22006 chfacfscmul0 22007 chfacfpmmulcl 22010 chfacfpmmul0 22011 chfacfpmmulgsum2 22014 cayhamlem1 22015 cpmadugsumlemB 22023 cpmadugsumlemC 22024 cpmadugsumlemF 22025 cayhamlem2 22033 cayhamlem4 22037 nrgtrg 23854 deg1pw 25285 plypf1 25373 efsubm 25707 amgm 26140 wilthlem2 26218 wilthlem3 26219 dchrelbas3 26386 lgsqrlem2 26495 lgsqrlem3 26496 lgsqrlem4 26497 cntrcrng 31322 psgnid 31364 cnmsgn0g 31413 altgnsg 31416 freshmansdream 31484 frobrhm 31485 znfermltl 31562 ringlsmss 31583 iistmd 31852 pwspjmhmmgpd 40267 pwsexpg 40268 evlsbagval 40275 evlsexpval 40276 mhphf 40285 hbtlem4 40951 idomrootle 41020 isdomn3 41029 mon1psubm 41031 amgm2d 41809 amgm3d 41810 amgm4d 41811 c0rhm 45470 c0rnghm 45471 lidlmsgrp 45484 invginvrid 45703 ply1mulgsumlem4 45730 ply1mulgsum 45731 amgmw2d 46508 |
Copyright terms: Public domain | W3C validator |