Detailed syntax breakdown of Definition df-mhm
| Step | Hyp | Ref
| Expression |
| 1 | | cmhm 18794 |
. 2
class
MndHom |
| 2 | | vs |
. . 3
setvar 𝑠 |
| 3 | | vt |
. . 3
setvar 𝑡 |
| 4 | | cmnd 18747 |
. . 3
class
Mnd |
| 5 | | vx |
. . . . . . . . . . 11
setvar 𝑥 |
| 6 | 5 | cv 1539 |
. . . . . . . . . 10
class 𝑥 |
| 7 | | vy |
. . . . . . . . . . 11
setvar 𝑦 |
| 8 | 7 | cv 1539 |
. . . . . . . . . 10
class 𝑦 |
| 9 | 2 | cv 1539 |
. . . . . . . . . . 11
class 𝑠 |
| 10 | | cplusg 17297 |
. . . . . . . . . . 11
class
+g |
| 11 | 9, 10 | cfv 6561 |
. . . . . . . . . 10
class
(+g‘𝑠) |
| 12 | 6, 8, 11 | co 7431 |
. . . . . . . . 9
class (𝑥(+g‘𝑠)𝑦) |
| 13 | | vf |
. . . . . . . . . 10
setvar 𝑓 |
| 14 | 13 | cv 1539 |
. . . . . . . . 9
class 𝑓 |
| 15 | 12, 14 | cfv 6561 |
. . . . . . . 8
class (𝑓‘(𝑥(+g‘𝑠)𝑦)) |
| 16 | 6, 14 | cfv 6561 |
. . . . . . . . 9
class (𝑓‘𝑥) |
| 17 | 8, 14 | cfv 6561 |
. . . . . . . . 9
class (𝑓‘𝑦) |
| 18 | 3 | cv 1539 |
. . . . . . . . . 10
class 𝑡 |
| 19 | 18, 10 | cfv 6561 |
. . . . . . . . 9
class
(+g‘𝑡) |
| 20 | 16, 17, 19 | co 7431 |
. . . . . . . 8
class ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) |
| 21 | 15, 20 | wceq 1540 |
. . . . . . 7
wff (𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) |
| 22 | | cbs 17247 |
. . . . . . . 8
class
Base |
| 23 | 9, 22 | cfv 6561 |
. . . . . . 7
class
(Base‘𝑠) |
| 24 | 21, 7, 23 | wral 3061 |
. . . . . 6
wff
∀𝑦 ∈
(Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) |
| 25 | 24, 5, 23 | wral 3061 |
. . . . 5
wff
∀𝑥 ∈
(Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) |
| 26 | | c0g 17484 |
. . . . . . . 8
class
0g |
| 27 | 9, 26 | cfv 6561 |
. . . . . . 7
class
(0g‘𝑠) |
| 28 | 27, 14 | cfv 6561 |
. . . . . 6
class (𝑓‘(0g‘𝑠)) |
| 29 | 18, 26 | cfv 6561 |
. . . . . 6
class
(0g‘𝑡) |
| 30 | 28, 29 | wceq 1540 |
. . . . 5
wff (𝑓‘(0g‘𝑠)) = (0g‘𝑡) |
| 31 | 25, 30 | wa 395 |
. . . 4
wff
(∀𝑥 ∈
(Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑠)) = (0g‘𝑡)) |
| 32 | 18, 22 | cfv 6561 |
. . . . 5
class
(Base‘𝑡) |
| 33 | | cmap 8866 |
. . . . 5
class
↑m |
| 34 | 32, 23, 33 | co 7431 |
. . . 4
class
((Base‘𝑡)
↑m (Base‘𝑠)) |
| 35 | 31, 13, 34 | crab 3436 |
. . 3
class {𝑓 ∈ ((Base‘𝑡) ↑m
(Base‘𝑠)) ∣
(∀𝑥 ∈
(Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑠)) = (0g‘𝑡))} |
| 36 | 2, 3, 4, 4, 35 | cmpo 7433 |
. 2
class (𝑠 ∈ Mnd, 𝑡 ∈ Mnd ↦ {𝑓 ∈ ((Base‘𝑡) ↑m (Base‘𝑠)) ∣ (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑠)) = (0g‘𝑡))}) |
| 37 | 1, 36 | wceq 1540 |
1
wff MndHom =
(𝑠 ∈ Mnd, 𝑡 ∈ Mnd ↦ {𝑓 ∈ ((Base‘𝑡) ↑m
(Base‘𝑠)) ∣
(∀𝑥 ∈
(Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑠)) = (0g‘𝑡))}) |