Detailed syntax breakdown of Definition df-mhm
Step | Hyp | Ref
| Expression |
1 | | cmhm 18473 |
. 2
class
MndHom |
2 | | vs |
. . 3
setvar 𝑠 |
3 | | vt |
. . 3
setvar 𝑡 |
4 | | cmnd 18430 |
. . 3
class
Mnd |
5 | | vx |
. . . . . . . . . . 11
setvar 𝑥 |
6 | 5 | cv 1538 |
. . . . . . . . . 10
class 𝑥 |
7 | | vy |
. . . . . . . . . . 11
setvar 𝑦 |
8 | 7 | cv 1538 |
. . . . . . . . . 10
class 𝑦 |
9 | 2 | cv 1538 |
. . . . . . . . . . 11
class 𝑠 |
10 | | cplusg 17007 |
. . . . . . . . . . 11
class
+g |
11 | 9, 10 | cfv 6458 |
. . . . . . . . . 10
class
(+g‘𝑠) |
12 | 6, 8, 11 | co 7307 |
. . . . . . . . 9
class (𝑥(+g‘𝑠)𝑦) |
13 | | vf |
. . . . . . . . . 10
setvar 𝑓 |
14 | 13 | cv 1538 |
. . . . . . . . 9
class 𝑓 |
15 | 12, 14 | cfv 6458 |
. . . . . . . 8
class (𝑓‘(𝑥(+g‘𝑠)𝑦)) |
16 | 6, 14 | cfv 6458 |
. . . . . . . . 9
class (𝑓‘𝑥) |
17 | 8, 14 | cfv 6458 |
. . . . . . . . 9
class (𝑓‘𝑦) |
18 | 3 | cv 1538 |
. . . . . . . . . 10
class 𝑡 |
19 | 18, 10 | cfv 6458 |
. . . . . . . . 9
class
(+g‘𝑡) |
20 | 16, 17, 19 | co 7307 |
. . . . . . . 8
class ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) |
21 | 15, 20 | wceq 1539 |
. . . . . . 7
wff (𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) |
22 | | cbs 16957 |
. . . . . . . 8
class
Base |
23 | 9, 22 | cfv 6458 |
. . . . . . 7
class
(Base‘𝑠) |
24 | 21, 7, 23 | wral 3062 |
. . . . . 6
wff
∀𝑦 ∈
(Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) |
25 | 24, 5, 23 | wral 3062 |
. . . . 5
wff
∀𝑥 ∈
(Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) |
26 | | c0g 17195 |
. . . . . . . 8
class
0g |
27 | 9, 26 | cfv 6458 |
. . . . . . 7
class
(0g‘𝑠) |
28 | 27, 14 | cfv 6458 |
. . . . . 6
class (𝑓‘(0g‘𝑠)) |
29 | 18, 26 | cfv 6458 |
. . . . . 6
class
(0g‘𝑡) |
30 | 28, 29 | wceq 1539 |
. . . . 5
wff (𝑓‘(0g‘𝑠)) = (0g‘𝑡) |
31 | 25, 30 | wa 397 |
. . . 4
wff
(∀𝑥 ∈
(Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑠)) = (0g‘𝑡)) |
32 | 18, 22 | cfv 6458 |
. . . . 5
class
(Base‘𝑡) |
33 | | cmap 8646 |
. . . . 5
class
↑m |
34 | 32, 23, 33 | co 7307 |
. . . 4
class
((Base‘𝑡)
↑m (Base‘𝑠)) |
35 | 31, 13, 34 | crab 3284 |
. . 3
class {𝑓 ∈ ((Base‘𝑡) ↑m
(Base‘𝑠)) ∣
(∀𝑥 ∈
(Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑠)) = (0g‘𝑡))} |
36 | 2, 3, 4, 4, 35 | cmpo 7309 |
. 2
class (𝑠 ∈ Mnd, 𝑡 ∈ Mnd ↦ {𝑓 ∈ ((Base‘𝑡) ↑m (Base‘𝑠)) ∣ (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑠)) = (0g‘𝑡))}) |
37 | 1, 36 | wceq 1539 |
1
wff MndHom =
(𝑠 ∈ Mnd, 𝑡 ∈ Mnd ↦ {𝑓 ∈ ((Base‘𝑡) ↑m
(Base‘𝑠)) ∣
(∀𝑥 ∈
(Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑠)) = (0g‘𝑡))}) |