MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmrcl1 Structured version   Visualization version   GIF version

Theorem mhmrcl1 18461
Description: Reverse closure of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
Assertion
Ref Expression
mhmrcl1 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑆 ∈ Mnd)

Proof of Theorem mhmrcl1
Dummy variables 𝑓 𝑠 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mhm 18458 . 2 MndHom = (𝑠 ∈ Mnd, 𝑡 ∈ Mnd ↦ {𝑓 ∈ ((Base‘𝑡) ↑m (Base‘𝑠)) ∣ (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑠)) = (0g𝑡))})
21elmpocl1 7532 1 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑆 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2101  wral 3059  {crab 3221  cfv 6447  (class class class)co 7295  m cmap 8635  Basecbs 16940  +gcplusg 16990  0gc0g 17178  Mndcmnd 18413   MndHom cmhm 18456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ral 3060  df-rex 3069  df-rab 3224  df-v 3436  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-br 5078  df-opab 5140  df-xp 5597  df-dm 5601  df-iota 6399  df-fv 6455  df-ov 7298  df-oprab 7299  df-mpo 7300  df-mhm 18458
This theorem is referenced by:  mhmf1o  18468  resmhm2  18488  resmhm2b  18489  mhmco  18490  mhmeql  18492  pwsco2mhm  18499  gsumwmhm  18512  mhmmulg  18772  mhmvlin  21574  mhmhmeotmd  31905
  Copyright terms: Public domain W3C validator