MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmrcl1 Structured version   Visualization version   GIF version

Theorem mhmrcl1 17949
Description: Reverse closure of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
Assertion
Ref Expression
mhmrcl1 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑆 ∈ Mnd)

Proof of Theorem mhmrcl1
Dummy variables 𝑓 𝑠 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mhm 17946 . 2 MndHom = (𝑠 ∈ Mnd, 𝑡 ∈ Mnd ↦ {𝑓 ∈ ((Base‘𝑡) ↑m (Base‘𝑠)) ∣ (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑠)) = (0g𝑡))})
21elmpocl1 7381 1 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑆 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2106  wral 3142  {crab 3146  cfv 6351  (class class class)co 7151  m cmap 8399  Basecbs 16475  +gcplusg 16557  0gc0g 16705  Mndcmnd 17902   MndHom cmhm 17944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ral 3147  df-rex 3148  df-rab 3151  df-v 3501  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-br 5063  df-opab 5125  df-xp 5559  df-dm 5563  df-iota 6311  df-fv 6359  df-ov 7154  df-oprab 7155  df-mpo 7156  df-mhm 17946
This theorem is referenced by:  mhmf1o  17956  resmhm2  17971  resmhm2b  17972  mhmco  17973  mhmeql  17975  pwsco2mhm  17982  gsumwmhm  17995  mhmmulg  18200  mhmvlin  20924  mhmhmeotmd  31057
  Copyright terms: Public domain W3C validator