MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismhm Structured version   Visualization version   GIF version

Theorem ismhm 17950
Description: Property of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
ismhm.b 𝐵 = (Base‘𝑆)
ismhm.c 𝐶 = (Base‘𝑇)
ismhm.p + = (+g𝑆)
ismhm.q = (+g𝑇)
ismhm.z 0 = (0g𝑆)
ismhm.y 𝑌 = (0g𝑇)
Assertion
Ref Expression
ismhm (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   + (𝑥,𝑦)   (𝑥,𝑦)   𝑌(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem ismhm
Dummy variables 𝑓 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mhm 17948 . . 3 MndHom = (𝑠 ∈ Mnd, 𝑡 ∈ Mnd ↦ {𝑓 ∈ ((Base‘𝑡) ↑m (Base‘𝑠)) ∣ (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑠)) = (0g𝑡))})
21elmpocl 7367 . 2 (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd))
3 fveq2 6645 . . . . . . . 8 (𝑡 = 𝑇 → (Base‘𝑡) = (Base‘𝑇))
4 ismhm.c . . . . . . . 8 𝐶 = (Base‘𝑇)
53, 4eqtr4di 2851 . . . . . . 7 (𝑡 = 𝑇 → (Base‘𝑡) = 𝐶)
6 fveq2 6645 . . . . . . . 8 (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆))
7 ismhm.b . . . . . . . 8 𝐵 = (Base‘𝑆)
86, 7eqtr4di 2851 . . . . . . 7 (𝑠 = 𝑆 → (Base‘𝑠) = 𝐵)
95, 8oveqan12rd 7155 . . . . . 6 ((𝑠 = 𝑆𝑡 = 𝑇) → ((Base‘𝑡) ↑m (Base‘𝑠)) = (𝐶m 𝐵))
108adantr 484 . . . . . . . 8 ((𝑠 = 𝑆𝑡 = 𝑇) → (Base‘𝑠) = 𝐵)
11 fveq2 6645 . . . . . . . . . . . . 13 (𝑠 = 𝑆 → (+g𝑠) = (+g𝑆))
12 ismhm.p . . . . . . . . . . . . 13 + = (+g𝑆)
1311, 12eqtr4di 2851 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (+g𝑠) = + )
1413oveqd 7152 . . . . . . . . . . 11 (𝑠 = 𝑆 → (𝑥(+g𝑠)𝑦) = (𝑥 + 𝑦))
1514fveq2d 6649 . . . . . . . . . 10 (𝑠 = 𝑆 → (𝑓‘(𝑥(+g𝑠)𝑦)) = (𝑓‘(𝑥 + 𝑦)))
16 fveq2 6645 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (+g𝑡) = (+g𝑇))
17 ismhm.q . . . . . . . . . . . 12 = (+g𝑇)
1816, 17eqtr4di 2851 . . . . . . . . . . 11 (𝑡 = 𝑇 → (+g𝑡) = )
1918oveqd 7152 . . . . . . . . . 10 (𝑡 = 𝑇 → ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) = ((𝑓𝑥) (𝑓𝑦)))
2015, 19eqeqan12d 2815 . . . . . . . . 9 ((𝑠 = 𝑆𝑡 = 𝑇) → ((𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ↔ (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦))))
2110, 20raleqbidv 3354 . . . . . . . 8 ((𝑠 = 𝑆𝑡 = 𝑇) → (∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ↔ ∀𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦))))
2210, 21raleqbidv 3354 . . . . . . 7 ((𝑠 = 𝑆𝑡 = 𝑇) → (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦))))
23 fveq2 6645 . . . . . . . . . 10 (𝑠 = 𝑆 → (0g𝑠) = (0g𝑆))
24 ismhm.z . . . . . . . . . 10 0 = (0g𝑆)
2523, 24eqtr4di 2851 . . . . . . . . 9 (𝑠 = 𝑆 → (0g𝑠) = 0 )
2625fveq2d 6649 . . . . . . . 8 (𝑠 = 𝑆 → (𝑓‘(0g𝑠)) = (𝑓0 ))
27 fveq2 6645 . . . . . . . . 9 (𝑡 = 𝑇 → (0g𝑡) = (0g𝑇))
28 ismhm.y . . . . . . . . 9 𝑌 = (0g𝑇)
2927, 28eqtr4di 2851 . . . . . . . 8 (𝑡 = 𝑇 → (0g𝑡) = 𝑌)
3026, 29eqeqan12d 2815 . . . . . . 7 ((𝑠 = 𝑆𝑡 = 𝑇) → ((𝑓‘(0g𝑠)) = (0g𝑡) ↔ (𝑓0 ) = 𝑌))
3122, 30anbi12d 633 . . . . . 6 ((𝑠 = 𝑆𝑡 = 𝑇) → ((∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑠)) = (0g𝑡)) ↔ (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌)))
329, 31rabeqbidv 3433 . . . . 5 ((𝑠 = 𝑆𝑡 = 𝑇) → {𝑓 ∈ ((Base‘𝑡) ↑m (Base‘𝑠)) ∣ (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑠)) = (0g𝑡))} = {𝑓 ∈ (𝐶m 𝐵) ∣ (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌)})
33 ovex 7168 . . . . . 6 (𝐶m 𝐵) ∈ V
3433rabex 5199 . . . . 5 {𝑓 ∈ (𝐶m 𝐵) ∣ (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌)} ∈ V
3532, 1, 34ovmpoa 7284 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑆 MndHom 𝑇) = {𝑓 ∈ (𝐶m 𝐵) ∣ (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌)})
3635eleq2d 2875 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ 𝐹 ∈ {𝑓 ∈ (𝐶m 𝐵) ∣ (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌)}))
374fvexi 6659 . . . . . 6 𝐶 ∈ V
387fvexi 6659 . . . . . 6 𝐵 ∈ V
3937, 38elmap 8418 . . . . 5 (𝐹 ∈ (𝐶m 𝐵) ↔ 𝐹:𝐵𝐶)
4039anbi1i 626 . . . 4 ((𝐹 ∈ (𝐶m 𝐵) ∧ (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)) ↔ (𝐹:𝐵𝐶 ∧ (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)))
41 fveq1 6644 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓‘(𝑥 + 𝑦)) = (𝐹‘(𝑥 + 𝑦)))
42 fveq1 6644 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
43 fveq1 6644 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
4442, 43oveq12d 7153 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓𝑥) (𝑓𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
4541, 44eqeq12d 2814 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ↔ (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))))
46452ralbidv 3164 . . . . . 6 (𝑓 = 𝐹 → (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))))
47 fveq1 6644 . . . . . . 7 (𝑓 = 𝐹 → (𝑓0 ) = (𝐹0 ))
4847eqeq1d 2800 . . . . . 6 (𝑓 = 𝐹 → ((𝑓0 ) = 𝑌 ↔ (𝐹0 ) = 𝑌))
4946, 48anbi12d 633 . . . . 5 (𝑓 = 𝐹 → ((∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌) ↔ (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)))
5049elrab 3628 . . . 4 (𝐹 ∈ {𝑓 ∈ (𝐶m 𝐵) ∣ (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌)} ↔ (𝐹 ∈ (𝐶m 𝐵) ∧ (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)))
51 3anass 1092 . . . 4 ((𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌) ↔ (𝐹:𝐵𝐶 ∧ (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)))
5240, 50, 513bitr4i 306 . . 3 (𝐹 ∈ {𝑓 ∈ (𝐶m 𝐵) ∣ (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌)} ↔ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌))
5336, 52syl6bb 290 . 2 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)))
542, 53biadanii 821 1 (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  {crab 3110  wf 6320  cfv 6324  (class class class)co 7135  m cmap 8389  Basecbs 16475  +gcplusg 16557  0gc0g 16705  Mndcmnd 17903   MndHom cmhm 17946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-map 8391  df-mhm 17948
This theorem is referenced by:  mhmf  17953  mhmpropd  17954  mhmlin  17955  mhm0  17956  idmhm  17957  mhmf1o  17958  0mhm  17976  resmhm  17977  resmhm2  17978  resmhm2b  17979  mhmco  17980  prdspjmhm  17985  pwsdiagmhm  17987  pwsco1mhm  17988  pwsco2mhm  17989  frmdup1  18021  mhmfmhm  18214  ghmmhm  18360  frgpmhm  18883  mulgmhm  18941  srglmhm  19278  srgrmhm  19279  dfrhm2  19465  isrhm2d  19476  expmhm  20160  mat1mhm  21089  scmatmhm  21139  mat2pmatmhm  21338  pm2mpmhm  21425  dchrelbas3  25822  xrge0iifmhm  31292  esumcocn  31449  elmrsubrn  32880  deg1mhm  40151  ismhm0  44425  mhmismgmhm  44426  c0mhm  44534
  Copyright terms: Public domain W3C validator