MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismhm Structured version   Visualization version   GIF version

Theorem ismhm 17960
Description: Property of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
ismhm.b 𝐵 = (Base‘𝑆)
ismhm.c 𝐶 = (Base‘𝑇)
ismhm.p + = (+g𝑆)
ismhm.q = (+g𝑇)
ismhm.z 0 = (0g𝑆)
ismhm.y 𝑌 = (0g𝑇)
Assertion
Ref Expression
ismhm (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   + (𝑥,𝑦)   (𝑥,𝑦)   𝑌(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem ismhm
Dummy variables 𝑓 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mhm 17958 . . 3 MndHom = (𝑠 ∈ Mnd, 𝑡 ∈ Mnd ↦ {𝑓 ∈ ((Base‘𝑡) ↑m (Base‘𝑠)) ∣ (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑠)) = (0g𝑡))})
21elmpocl 7389 . 2 (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd))
3 fveq2 6672 . . . . . . . 8 (𝑡 = 𝑇 → (Base‘𝑡) = (Base‘𝑇))
4 ismhm.c . . . . . . . 8 𝐶 = (Base‘𝑇)
53, 4syl6eqr 2876 . . . . . . 7 (𝑡 = 𝑇 → (Base‘𝑡) = 𝐶)
6 fveq2 6672 . . . . . . . 8 (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆))
7 ismhm.b . . . . . . . 8 𝐵 = (Base‘𝑆)
86, 7syl6eqr 2876 . . . . . . 7 (𝑠 = 𝑆 → (Base‘𝑠) = 𝐵)
95, 8oveqan12rd 7178 . . . . . 6 ((𝑠 = 𝑆𝑡 = 𝑇) → ((Base‘𝑡) ↑m (Base‘𝑠)) = (𝐶m 𝐵))
108adantr 483 . . . . . . . 8 ((𝑠 = 𝑆𝑡 = 𝑇) → (Base‘𝑠) = 𝐵)
11 fveq2 6672 . . . . . . . . . . . . 13 (𝑠 = 𝑆 → (+g𝑠) = (+g𝑆))
12 ismhm.p . . . . . . . . . . . . 13 + = (+g𝑆)
1311, 12syl6eqr 2876 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (+g𝑠) = + )
1413oveqd 7175 . . . . . . . . . . 11 (𝑠 = 𝑆 → (𝑥(+g𝑠)𝑦) = (𝑥 + 𝑦))
1514fveq2d 6676 . . . . . . . . . 10 (𝑠 = 𝑆 → (𝑓‘(𝑥(+g𝑠)𝑦)) = (𝑓‘(𝑥 + 𝑦)))
16 fveq2 6672 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (+g𝑡) = (+g𝑇))
17 ismhm.q . . . . . . . . . . . 12 = (+g𝑇)
1816, 17syl6eqr 2876 . . . . . . . . . . 11 (𝑡 = 𝑇 → (+g𝑡) = )
1918oveqd 7175 . . . . . . . . . 10 (𝑡 = 𝑇 → ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) = ((𝑓𝑥) (𝑓𝑦)))
2015, 19eqeqan12d 2840 . . . . . . . . 9 ((𝑠 = 𝑆𝑡 = 𝑇) → ((𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ↔ (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦))))
2110, 20raleqbidv 3403 . . . . . . . 8 ((𝑠 = 𝑆𝑡 = 𝑇) → (∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ↔ ∀𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦))))
2210, 21raleqbidv 3403 . . . . . . 7 ((𝑠 = 𝑆𝑡 = 𝑇) → (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦))))
23 fveq2 6672 . . . . . . . . . 10 (𝑠 = 𝑆 → (0g𝑠) = (0g𝑆))
24 ismhm.z . . . . . . . . . 10 0 = (0g𝑆)
2523, 24syl6eqr 2876 . . . . . . . . 9 (𝑠 = 𝑆 → (0g𝑠) = 0 )
2625fveq2d 6676 . . . . . . . 8 (𝑠 = 𝑆 → (𝑓‘(0g𝑠)) = (𝑓0 ))
27 fveq2 6672 . . . . . . . . 9 (𝑡 = 𝑇 → (0g𝑡) = (0g𝑇))
28 ismhm.y . . . . . . . . 9 𝑌 = (0g𝑇)
2927, 28syl6eqr 2876 . . . . . . . 8 (𝑡 = 𝑇 → (0g𝑡) = 𝑌)
3026, 29eqeqan12d 2840 . . . . . . 7 ((𝑠 = 𝑆𝑡 = 𝑇) → ((𝑓‘(0g𝑠)) = (0g𝑡) ↔ (𝑓0 ) = 𝑌))
3122, 30anbi12d 632 . . . . . 6 ((𝑠 = 𝑆𝑡 = 𝑇) → ((∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑠)) = (0g𝑡)) ↔ (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌)))
329, 31rabeqbidv 3487 . . . . 5 ((𝑠 = 𝑆𝑡 = 𝑇) → {𝑓 ∈ ((Base‘𝑡) ↑m (Base‘𝑠)) ∣ (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑠)) = (0g𝑡))} = {𝑓 ∈ (𝐶m 𝐵) ∣ (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌)})
33 ovex 7191 . . . . . 6 (𝐶m 𝐵) ∈ V
3433rabex 5237 . . . . 5 {𝑓 ∈ (𝐶m 𝐵) ∣ (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌)} ∈ V
3532, 1, 34ovmpoa 7307 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑆 MndHom 𝑇) = {𝑓 ∈ (𝐶m 𝐵) ∣ (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌)})
3635eleq2d 2900 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ 𝐹 ∈ {𝑓 ∈ (𝐶m 𝐵) ∣ (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌)}))
374fvexi 6686 . . . . . 6 𝐶 ∈ V
387fvexi 6686 . . . . . 6 𝐵 ∈ V
3937, 38elmap 8437 . . . . 5 (𝐹 ∈ (𝐶m 𝐵) ↔ 𝐹:𝐵𝐶)
4039anbi1i 625 . . . 4 ((𝐹 ∈ (𝐶m 𝐵) ∧ (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)) ↔ (𝐹:𝐵𝐶 ∧ (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)))
41 fveq1 6671 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓‘(𝑥 + 𝑦)) = (𝐹‘(𝑥 + 𝑦)))
42 fveq1 6671 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
43 fveq1 6671 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
4442, 43oveq12d 7176 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓𝑥) (𝑓𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
4541, 44eqeq12d 2839 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ↔ (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))))
46452ralbidv 3201 . . . . . 6 (𝑓 = 𝐹 → (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))))
47 fveq1 6671 . . . . . . 7 (𝑓 = 𝐹 → (𝑓0 ) = (𝐹0 ))
4847eqeq1d 2825 . . . . . 6 (𝑓 = 𝐹 → ((𝑓0 ) = 𝑌 ↔ (𝐹0 ) = 𝑌))
4946, 48anbi12d 632 . . . . 5 (𝑓 = 𝐹 → ((∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌) ↔ (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)))
5049elrab 3682 . . . 4 (𝐹 ∈ {𝑓 ∈ (𝐶m 𝐵) ∣ (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌)} ↔ (𝐹 ∈ (𝐶m 𝐵) ∧ (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)))
51 3anass 1091 . . . 4 ((𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌) ↔ (𝐹:𝐵𝐶 ∧ (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)))
5240, 50, 513bitr4i 305 . . 3 (𝐹 ∈ {𝑓 ∈ (𝐶m 𝐵) ∣ (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ∧ (𝑓0 ) = 𝑌)} ↔ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌))
5336, 52syl6bb 289 . 2 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)))
542, 53biadanii 820 1 (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  {crab 3144  wf 6353  cfv 6357  (class class class)co 7158  m cmap 8408  Basecbs 16485  +gcplusg 16567  0gc0g 16715  Mndcmnd 17913   MndHom cmhm 17956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-map 8410  df-mhm 17958
This theorem is referenced by:  mhmf  17963  mhmpropd  17964  mhmlin  17965  mhm0  17966  idmhm  17967  mhmf1o  17968  0mhm  17986  resmhm  17987  resmhm2  17988  resmhm2b  17989  mhmco  17990  prdspjmhm  17995  pwsdiagmhm  17997  pwsco1mhm  17998  pwsco2mhm  17999  frmdup1  18031  mhmfmhm  18224  ghmmhm  18370  frgpmhm  18893  mulgmhm  18950  srglmhm  19287  srgrmhm  19288  dfrhm2  19471  isrhm2d  19482  expmhm  20616  mat1mhm  21095  scmatmhm  21145  mat2pmatmhm  21343  pm2mpmhm  21430  dchrelbas3  25816  xrge0iifmhm  31184  esumcocn  31341  elmrsubrn  32769  deg1mhm  39814  ismhm0  44079  mhmismgmhm  44080  c0mhm  44188
  Copyright terms: Public domain W3C validator