![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mhmrcl2 | Structured version Visualization version GIF version |
Description: Reverse closure of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.) |
Ref | Expression |
---|---|
mhmrcl2 | ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑇 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mhm 18809 | . 2 ⊢ MndHom = (𝑠 ∈ Mnd, 𝑡 ∈ Mnd ↦ {𝑓 ∈ ((Base‘𝑡) ↑m (Base‘𝑠)) ∣ (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑠)) = (0g‘𝑡))}) | |
2 | 1 | elmpocl2 7676 | 1 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑇 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 {crab 3433 ‘cfv 6563 (class class class)co 7431 ↑m cmap 8865 Basecbs 17245 +gcplusg 17298 0gc0g 17486 Mndcmnd 18760 MndHom cmhm 18807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-dm 5699 df-iota 6516 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-mhm 18809 |
This theorem is referenced by: mhmf1o 18822 resmhm 18846 mhmco 18849 mhmima 18851 pwsco2mhm 18859 gsumwmhm 18871 mhmmulg 19146 mhmhmeotmd 33888 |
Copyright terms: Public domain | W3C validator |