![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mhmrcl2 | Structured version Visualization version GIF version |
Description: Reverse closure of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.) |
Ref | Expression |
---|---|
mhmrcl2 | ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑇 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mhm 18700 | . 2 ⊢ MndHom = (𝑠 ∈ Mnd, 𝑡 ∈ Mnd ↦ {𝑓 ∈ ((Base‘𝑡) ↑m (Base‘𝑠)) ∣ (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑠)) = (0g‘𝑡))}) | |
2 | 1 | elmpocl2 7643 | 1 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑇 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3053 {crab 3424 ‘cfv 6533 (class class class)co 7401 ↑m cmap 8815 Basecbs 17140 +gcplusg 17193 0gc0g 17381 Mndcmnd 18654 MndHom cmhm 18698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-xp 5672 df-dm 5676 df-iota 6485 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-mhm 18700 |
This theorem is referenced by: mhmf1o 18713 resmhm 18732 mhmco 18735 mhmima 18737 pwsco2mhm 18745 gsumwmhm 18757 mhmmulg 19027 mhmhmeotmd 33362 |
Copyright terms: Public domain | W3C validator |