MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmrcl2 Structured version   Visualization version   GIF version

Theorem mhmrcl2 18349
Description: Reverse closure of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
Assertion
Ref Expression
mhmrcl2 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑇 ∈ Mnd)

Proof of Theorem mhmrcl2
Dummy variables 𝑓 𝑠 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mhm 18345 . 2 MndHom = (𝑠 ∈ Mnd, 𝑡 ∈ Mnd ↦ {𝑓 ∈ ((Base‘𝑡) ↑m (Base‘𝑠)) ∣ (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑠)) = (0g𝑡))})
21elmpocl2 7491 1 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑇 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  {crab 3067  cfv 6418  (class class class)co 7255  m cmap 8573  Basecbs 16840  +gcplusg 16888  0gc0g 17067  Mndcmnd 18300   MndHom cmhm 18343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-dm 5590  df-iota 6376  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-mhm 18345
This theorem is referenced by:  mhmf1o  18355  resmhm  18374  mhmco  18377  mhmima  18378  pwsco2mhm  18386  gsumwmhm  18399  mhmmulg  18659  mhmhmeotmd  31779
  Copyright terms: Public domain W3C validator