MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmrcl2 Structured version   Visualization version   GIF version

Theorem mhmrcl2 18662
Description: Reverse closure of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
Assertion
Ref Expression
mhmrcl2 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑇 ∈ Mnd)

Proof of Theorem mhmrcl2
Dummy variables 𝑓 𝑠 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mhm 18657 . 2 MndHom = (𝑠 ∈ Mnd, 𝑡 ∈ Mnd ↦ {𝑓 ∈ ((Base‘𝑡) ↑m (Base‘𝑠)) ∣ (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑠)) = (0g𝑡))})
21elmpocl2 7592 1 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑇 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3394  cfv 6482  (class class class)co 7349  m cmap 8753  Basecbs 17120  +gcplusg 17161  0gc0g 17343  Mndcmnd 18608   MndHom cmhm 18655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-xp 5625  df-dm 5629  df-iota 6438  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-mhm 18657
This theorem is referenced by:  mhmf1o  18670  resmhm  18694  mhmco  18697  mhmima  18699  pwsco2mhm  18707  gsumwmhm  18719  mhmmulg  18994  mhmhmeotmd  33894
  Copyright terms: Public domain W3C validator