MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmrcl2 Structured version   Visualization version   GIF version

Theorem mhmrcl2 18705
Description: Reverse closure of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
Assertion
Ref Expression
mhmrcl2 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑇 ∈ Mnd)

Proof of Theorem mhmrcl2
Dummy variables 𝑓 𝑠 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mhm 18700 . 2 MndHom = (𝑠 ∈ Mnd, 𝑡 ∈ Mnd ↦ {𝑓 ∈ ((Base‘𝑡) ↑m (Base‘𝑠)) ∣ (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑠)) = (0g𝑡))})
21elmpocl2 7643 1 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑇 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wral 3053  {crab 3424  cfv 6533  (class class class)co 7401  m cmap 8815  Basecbs 17140  +gcplusg 17193  0gc0g 17381  Mndcmnd 18654   MndHom cmhm 18698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-xp 5672  df-dm 5676  df-iota 6485  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-mhm 18700
This theorem is referenced by:  mhmf1o  18713  resmhm  18732  mhmco  18735  mhmima  18737  pwsco2mhm  18745  gsumwmhm  18757  mhmmulg  19027  mhmhmeotmd  33362
  Copyright terms: Public domain W3C validator