MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhpfval Structured version   Visualization version   GIF version

Theorem mhpfval 22041
Description: Value of the "homogeneous polynomial" operator. (Contributed by Steven Nguyen, 25-Aug-2023.)
Hypotheses
Ref Expression
mhpfval.h 𝐻 = (𝐼 mHomP 𝑅)
mhpfval.p 𝑃 = (𝐼 mPoly 𝑅)
mhpfval.b 𝐵 = (Base‘𝑃)
mhpfval.0 0 = (0g𝑅)
mhpfval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
mhpfval.i (𝜑𝐼𝑉)
mhpfval.r (𝜑𝑅𝑊)
Assertion
Ref Expression
mhpfval (𝜑𝐻 = (𝑛 ∈ ℕ0 ↦ {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}))
Distinct variable groups:   𝑓,𝑔,,𝑛   𝑓,𝐼,,𝑛   𝑅,𝑓,𝑛   𝐷,𝑔   𝐵,𝑓
Allowed substitution hints:   𝜑(𝑓,𝑔,,𝑛)   𝐵(𝑔,,𝑛)   𝐷(𝑓,,𝑛)   𝑃(𝑓,𝑔,,𝑛)   𝑅(𝑔,)   𝐻(𝑓,𝑔,,𝑛)   𝐼(𝑔)   𝑉(𝑓,𝑔,,𝑛)   𝑊(𝑓,𝑔,,𝑛)   0 (𝑓,𝑔,,𝑛)

Proof of Theorem mhpfval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhpfval.h . 2 𝐻 = (𝐼 mHomP 𝑅)
2 mhpfval.i . . . 4 (𝜑𝐼𝑉)
32elexd 3462 . . 3 (𝜑𝐼 ∈ V)
4 mhpfval.r . . . 4 (𝜑𝑅𝑊)
54elexd 3462 . . 3 (𝜑𝑅 ∈ V)
6 oveq12 7362 . . . . . . . . 9 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPoly 𝑟) = (𝐼 mPoly 𝑅))
7 mhpfval.p . . . . . . . . 9 𝑃 = (𝐼 mPoly 𝑅)
86, 7eqtr4di 2782 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPoly 𝑟) = 𝑃)
98fveq2d 6830 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘(𝑖 mPoly 𝑟)) = (Base‘𝑃))
10 mhpfval.b . . . . . . 7 𝐵 = (Base‘𝑃)
119, 10eqtr4di 2782 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘(𝑖 mPoly 𝑟)) = 𝐵)
12 fveq2 6826 . . . . . . . . . 10 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
13 mhpfval.0 . . . . . . . . . 10 0 = (0g𝑅)
1412, 13eqtr4di 2782 . . . . . . . . 9 (𝑟 = 𝑅 → (0g𝑟) = 0 )
1514oveq2d 7369 . . . . . . . 8 (𝑟 = 𝑅 → (𝑓 supp (0g𝑟)) = (𝑓 supp 0 ))
1615adantl 481 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑓 supp (0g𝑟)) = (𝑓 supp 0 ))
17 oveq2 7361 . . . . . . . . . . 11 (𝑖 = 𝐼 → (ℕ0m 𝑖) = (ℕ0m 𝐼))
1817rabeqdv 3412 . . . . . . . . . 10 (𝑖 = 𝐼 → { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
19 mhpfval.d . . . . . . . . . 10 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
2018, 19eqtr4di 2782 . . . . . . . . 9 (𝑖 = 𝐼 → { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} = 𝐷)
2120rabeqdv 3412 . . . . . . . 8 (𝑖 = 𝐼 → {𝑔 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛} = {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛})
2221adantr 480 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → {𝑔 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛} = {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛})
2316, 22sseq12d 3971 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → ((𝑓 supp (0g𝑟)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛} ↔ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}))
2411, 23rabeqbidv 3415 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → {𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g𝑟)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛}} = {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}})
2524mpteq2dv 5189 . . . 4 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g𝑟)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}) = (𝑛 ∈ ℕ0 ↦ {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}))
26 df-mhp 22039 . . . 4 mHomP = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g𝑟)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}))
27 nn0ex 12408 . . . . 5 0 ∈ V
2827mptex 7163 . . . 4 (𝑛 ∈ ℕ0 ↦ {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}) ∈ V
2925, 26, 28ovmpoa 7508 . . 3 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mHomP 𝑅) = (𝑛 ∈ ℕ0 ↦ {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}))
303, 5, 29syl2anc 584 . 2 (𝜑 → (𝐼 mHomP 𝑅) = (𝑛 ∈ ℕ0 ↦ {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}))
311, 30eqtrid 2776 1 (𝜑𝐻 = (𝑛 ∈ ℕ0 ↦ {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3396  Vcvv 3438  wss 3905  cmpt 5176  ccnv 5622  cima 5626  cfv 6486  (class class class)co 7353   supp csupp 8100  m cmap 8760  Fincfn 8879  cn 12146  0cn0 12402  Basecbs 17138  s cress 17159  0gc0g 17361   Σg cgsu 17362  fldccnfld 21279   mPoly cmpl 21831   mHomP cmhp 22032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-1cn 11086  ax-addcl 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-nn 12147  df-n0 12403  df-mhp 22039
This theorem is referenced by:  mhpval  22042  mhprcl  22046
  Copyright terms: Public domain W3C validator