MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhpfval Structured version   Visualization version   GIF version

Theorem mhpfval 22025
Description: Value of the "homogeneous polynomial" operator. (Contributed by Steven Nguyen, 25-Aug-2023.)
Hypotheses
Ref Expression
mhpfval.h 𝐻 = (𝐼 mHomP 𝑅)
mhpfval.p 𝑃 = (𝐼 mPoly 𝑅)
mhpfval.b 𝐵 = (Base‘𝑃)
mhpfval.0 0 = (0g𝑅)
mhpfval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
mhpfval.i (𝜑𝐼𝑉)
mhpfval.r (𝜑𝑅𝑊)
Assertion
Ref Expression
mhpfval (𝜑𝐻 = (𝑛 ∈ ℕ0 ↦ {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}))
Distinct variable groups:   𝑓,𝑔,,𝑛   𝑓,𝐼,,𝑛   𝑅,𝑓,𝑛   𝐷,𝑔   𝐵,𝑓
Allowed substitution hints:   𝜑(𝑓,𝑔,,𝑛)   𝐵(𝑔,,𝑛)   𝐷(𝑓,,𝑛)   𝑃(𝑓,𝑔,,𝑛)   𝑅(𝑔,)   𝐻(𝑓,𝑔,,𝑛)   𝐼(𝑔)   𝑉(𝑓,𝑔,,𝑛)   𝑊(𝑓,𝑔,,𝑛)   0 (𝑓,𝑔,,𝑛)

Proof of Theorem mhpfval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhpfval.h . 2 𝐻 = (𝐼 mHomP 𝑅)
2 mhpfval.i . . . 4 (𝜑𝐼𝑉)
32elexd 3471 . . 3 (𝜑𝐼 ∈ V)
4 mhpfval.r . . . 4 (𝜑𝑅𝑊)
54elexd 3471 . . 3 (𝜑𝑅 ∈ V)
6 oveq12 7396 . . . . . . . . 9 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPoly 𝑟) = (𝐼 mPoly 𝑅))
7 mhpfval.p . . . . . . . . 9 𝑃 = (𝐼 mPoly 𝑅)
86, 7eqtr4di 2782 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPoly 𝑟) = 𝑃)
98fveq2d 6862 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘(𝑖 mPoly 𝑟)) = (Base‘𝑃))
10 mhpfval.b . . . . . . 7 𝐵 = (Base‘𝑃)
119, 10eqtr4di 2782 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘(𝑖 mPoly 𝑟)) = 𝐵)
12 fveq2 6858 . . . . . . . . . 10 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
13 mhpfval.0 . . . . . . . . . 10 0 = (0g𝑅)
1412, 13eqtr4di 2782 . . . . . . . . 9 (𝑟 = 𝑅 → (0g𝑟) = 0 )
1514oveq2d 7403 . . . . . . . 8 (𝑟 = 𝑅 → (𝑓 supp (0g𝑟)) = (𝑓 supp 0 ))
1615adantl 481 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑓 supp (0g𝑟)) = (𝑓 supp 0 ))
17 oveq2 7395 . . . . . . . . . . 11 (𝑖 = 𝐼 → (ℕ0m 𝑖) = (ℕ0m 𝐼))
1817rabeqdv 3421 . . . . . . . . . 10 (𝑖 = 𝐼 → { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
19 mhpfval.d . . . . . . . . . 10 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
2018, 19eqtr4di 2782 . . . . . . . . 9 (𝑖 = 𝐼 → { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} = 𝐷)
2120rabeqdv 3421 . . . . . . . 8 (𝑖 = 𝐼 → {𝑔 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛} = {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛})
2221adantr 480 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → {𝑔 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛} = {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛})
2316, 22sseq12d 3980 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → ((𝑓 supp (0g𝑟)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛} ↔ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}))
2411, 23rabeqbidv 3424 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → {𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g𝑟)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛}} = {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}})
2524mpteq2dv 5201 . . . 4 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g𝑟)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}) = (𝑛 ∈ ℕ0 ↦ {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}))
26 df-mhp 22023 . . . 4 mHomP = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g𝑟)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}))
27 nn0ex 12448 . . . . 5 0 ∈ V
2827mptex 7197 . . . 4 (𝑛 ∈ ℕ0 ↦ {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}) ∈ V
2925, 26, 28ovmpoa 7544 . . 3 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mHomP 𝑅) = (𝑛 ∈ ℕ0 ↦ {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}))
303, 5, 29syl2anc 584 . 2 (𝜑 → (𝐼 mHomP 𝑅) = (𝑛 ∈ ℕ0 ↦ {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}))
311, 30eqtrid 2776 1 (𝜑𝐻 = (𝑛 ∈ ℕ0 ↦ {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  wss 3914  cmpt 5188  ccnv 5637  cima 5641  cfv 6511  (class class class)co 7387   supp csupp 8139  m cmap 8799  Fincfn 8918  cn 12186  0cn0 12442  Basecbs 17179  s cress 17200  0gc0g 17402   Σg cgsu 17403  fldccnfld 21264   mPoly cmpl 21815   mHomP cmhp 22016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-1cn 11126  ax-addcl 11128
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-nn 12187  df-n0 12443  df-mhp 22023
This theorem is referenced by:  mhpval  22026  mhprcl  22030
  Copyright terms: Public domain W3C validator