MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhpfval Structured version   Visualization version   GIF version

Theorem mhpfval 20791
Description: Value of the "homogeneous polynomial" function. (Contributed by Steven Nguyen, 25-Aug-2023.)
Hypotheses
Ref Expression
mhpfval.h 𝐻 = (𝐼 mHomP 𝑅)
mhpfval.p 𝑃 = (𝐼 mPoly 𝑅)
mhpfval.b 𝐵 = (Base‘𝑃)
mhpfval.0 0 = (0g𝑅)
mhpfval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
mhpfval.i (𝜑𝐼𝑉)
mhpfval.r (𝜑𝑅𝑊)
Assertion
Ref Expression
mhpfval (𝜑𝐻 = (𝑛 ∈ ℕ0 ↦ {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}))
Distinct variable groups:   𝑓,𝑔,,𝑛   𝑓,𝐼,,𝑛   𝑅,𝑓,𝑛   𝐷,𝑔   𝐵,𝑓
Allowed substitution hints:   𝜑(𝑓,𝑔,,𝑛)   𝐵(𝑔,,𝑛)   𝐷(𝑓,,𝑛)   𝑃(𝑓,𝑔,,𝑛)   𝑅(𝑔,)   𝐻(𝑓,𝑔,,𝑛)   𝐼(𝑔)   𝑉(𝑓,𝑔,,𝑛)   𝑊(𝑓,𝑔,,𝑛)   0 (𝑓,𝑔,,𝑛)

Proof of Theorem mhpfval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhpfval.h . 2 𝐻 = (𝐼 mHomP 𝑅)
2 mhpfval.i . . . 4 (𝜑𝐼𝑉)
32elexd 3461 . . 3 (𝜑𝐼 ∈ V)
4 mhpfval.r . . . 4 (𝜑𝑅𝑊)
54elexd 3461 . . 3 (𝜑𝑅 ∈ V)
6 oveq12 7144 . . . . . . . . 9 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPoly 𝑟) = (𝐼 mPoly 𝑅))
7 mhpfval.p . . . . . . . . 9 𝑃 = (𝐼 mPoly 𝑅)
86, 7eqtr4di 2851 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPoly 𝑟) = 𝑃)
98fveq2d 6649 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘(𝑖 mPoly 𝑟)) = (Base‘𝑃))
10 mhpfval.b . . . . . . 7 𝐵 = (Base‘𝑃)
119, 10eqtr4di 2851 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘(𝑖 mPoly 𝑟)) = 𝐵)
12 fveq2 6645 . . . . . . . . . 10 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
13 mhpfval.0 . . . . . . . . . 10 0 = (0g𝑅)
1412, 13eqtr4di 2851 . . . . . . . . 9 (𝑟 = 𝑅 → (0g𝑟) = 0 )
1514oveq2d 7151 . . . . . . . 8 (𝑟 = 𝑅 → (𝑓 supp (0g𝑟)) = (𝑓 supp 0 ))
1615adantl 485 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑓 supp (0g𝑟)) = (𝑓 supp 0 ))
17 oveq2 7143 . . . . . . . . . . 11 (𝑖 = 𝐼 → (ℕ0m 𝑖) = (ℕ0m 𝐼))
1817rabeqdv 3432 . . . . . . . . . 10 (𝑖 = 𝐼 → { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
19 mhpfval.d . . . . . . . . . 10 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
2018, 19eqtr4di 2851 . . . . . . . . 9 (𝑖 = 𝐼 → { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} = 𝐷)
2120rabeqdv 3432 . . . . . . . 8 (𝑖 = 𝐼 → {𝑔 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛} = {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛})
2221adantr 484 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → {𝑔 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛} = {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛})
2316, 22sseq12d 3948 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → ((𝑓 supp (0g𝑟)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛} ↔ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}))
2411, 23rabeqbidv 3433 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → {𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g𝑟)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛}} = {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}})
2524mpteq2dv 5126 . . . 4 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g𝑟)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}) = (𝑛 ∈ ℕ0 ↦ {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}))
26 df-mhp 20785 . . . 4 mHomP = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g𝑟)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}))
27 nn0ex 11891 . . . . 5 0 ∈ V
2827mptex 6963 . . . 4 (𝑛 ∈ ℕ0 ↦ {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}) ∈ V
2925, 26, 28ovmpoa 7284 . . 3 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mHomP 𝑅) = (𝑛 ∈ ℕ0 ↦ {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}))
303, 5, 29syl2anc 587 . 2 (𝜑 → (𝐼 mHomP 𝑅) = (𝑛 ∈ ℕ0 ↦ {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}))
311, 30syl5eq 2845 1 (𝜑𝐻 = (𝑛 ∈ ℕ0 ↦ {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {crab 3110  Vcvv 3441  wss 3881  cmpt 5110  ccnv 5518  cima 5522  cfv 6324  (class class class)co 7135   supp csupp 7813  m cmap 8389  Fincfn 8492  cn 11625  0cn0 11885  Basecbs 16475  s cress 16476  0gc0g 16705   Σg cgsu 16706  fldccnfld 20091   mPoly cmpl 20591   mHomP cmhp 20781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-1cn 10584  ax-addcl 10586
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-nn 11626  df-n0 11886  df-mhp 20785
This theorem is referenced by:  mhpval  20792
  Copyright terms: Public domain W3C validator